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Bias in density estimates when the speed of whale sampling vessels
is reduced in high density areas

S. TANAKA (Institute of Cetacean Research)
Abstract

In order to cover the entire research area within an allocated time peried,
the Protocol of JARPA fixes a distance sampling vessel should proceed each
day. Due to this procedure, some part of the track lines would be left
unobserved because the proceeding speed of vessel is inevitably reduced in

a high whale density area. It is considered that the unchserved area causes

a bias in the estimate of whale density. In this paper, effects of size of
high density area and reduced speed of vessel on the estimate of whale density
are examined on the hasis of a simple model.

The space is expressed by a straight line of one dimension, and the length of
distance planned to proceed each day is taken as a unit of length. One high
density area of length w (<1) is included in the unit space. Whales are
distributed homogenecusly in each of high and low density area and the density
is d+b and b, respectively. The position of high density area x Is expressed
by the left side end point of the area. The distribution of x is homogeneous
within 0 - 1 range. If high density area is not included in the space,
sampling vessels can proceed one length unit within one time unit or working
hour in a day {speed=1). In a high density area the speed is reduced to v(<1),
The length of actual observed area in a day is {({1) and the number of schools
{or whales) observed (or taken) is n.

For calculating expectations E{n/#) and E{(n)/E(1), n a2nd ! are expressed as
funciions of x, and n/f, n and ! are integrated by x over a range of 0 - 1.
These expectations include parameters of w, v, d and b, The estimator proposed
by Burt & Borchers (1997) correspends to E(n/i), while the formula used for
JARPA corresponds to E{n)/E(i).

E(n/?) has a positive bias regardless of the values of w and v. On the
contrary, E(n)/E(1) gives either positive or negative bias depending on

& combidation of w and v values. Some dzia obtained by JARPA in Area V
suggest that possible ranges of oarameter values may roughly be w=0.1-0.2,
v=0.05-0.1 and dw/b=3-10. Within these ranges of parameter value, the bias of
E(n/1) could be 25-80%, and E(n)/E(1), -50-+5%. The ratio of these two
estimators would be as high as 2.

The bias in E{n)/E(!) is considered to be connected with a distorted sampling
ratio between high and low density areas. Possible negative bias in the JARPA
estimates suggests that the sampling ratio is lower in high density areas than
in low density areas.

It is very important to develop estimating methods free from biases due to
unobserved area and uneven sampling ratios, It would alsc be necessary to
formulate a procedure of survey which would not require sampling vessels to
crulse in the dark without surveying.
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I. Infroduction

The fact that the estimates of the population abundance by sighting in JARPA stays
about half of the estimates obtained by the IDCR is now at issue (Nishiwald et al,
1997). One possible cause of this phenomenon may be in the procedure of JARPA
that, in order to cover the research area thoroughly within a limited interval of
research days, proceeding distance per day is set, and when this distance is not
covered in a day, the vessel is obliged to cruise during night-time so that it can start
from pre-determined point the next morning (Nishiwald et al, 1997). When a high
density area is encountered, proceeding speed is reduced, and a distance sampling
vessel actually proceed each day is shortened. The higher the density of whales the
longer the distance of idle cruising and sighting effort (proceeding distance) is
reduced. For this reason, underestimation could occur as a whole.

This issue canmot be overlooked also in terms of representativeness of samples.
Reduction of effort in high density area means that samphng ratio in low density
areas gets relatively higher, and biological parameters in low density areas are
emphasized in the samples. If there ave differences in biological parameters such as
sex ratio and age composition between high density areas and low density areas,
there is a possibility that bias is introduced in the estimates of biological parameters.

The standard density estimation method used by the IWC is that, firstly sea areas
are stratified and then the total number of whales sighted  (in actuality the nuwmber
of schools) is divided by total distance searched (actual proceeding distance), in each
stratum. Denoting daily number of whales sighted by ni, and actual proceeding
distance by 4,

Density = L ny /L 1

is obtained (Nishiwald et al. 1997). This method means to average ni/ 4 using 4 as
weight. If ni/ & and 4 are correlated, the density estimates will have bias.

As one method to eliminate this bias, the following formula can be considefed:

M

Co/t) 78 o (@ Lei/t) /DL
Here M stands for the number of research days, and Li stands for planned daily
proceeding distance. If daily Liis constant, the two formulae are identical. The latter
formula was used by Burt & Borchers (1997). When this formula is used, an
estimate from JARPA gives rather similar value as that from IDCR.

The formula used by Burt & Borchers is based on the assumption that ni/ 4
represents the density of all the space to be surveyed on the day. In other words, the
portion already passed is supposed to be a random sample from the whole space.
However, the high density area is a continuos space and the portion of space already
passed is naturally continuous. Therefore, there is a possibility that it does not

become random sample. In such a case, bias will be introduced in estimates. In this
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paper, characteristics of n/ is examined by means of a smple model within the scope
treatable analytically and compared with X n/3¢

IL Model for sampling operation

Space: pre-determined proceeding distance per day is taken as the unit of length and
set as 1 in single-dimension space.

Time: time required to pass the umit space in case the schools of whales are
distributed uniformly at density bissetas 1.

Searching survey: research vessels start moving from the left end of the space and
proceed, to the right. Whales are counted on the basis of the number of schools.

Whale density: density in ordinary area is b and is constant. (The nwmber of schools
sighted in the unit ime and distance is set as b umit)

High density area: high density areas of the length w are arranged at certain
intervals (1-w) in the infinite space. The starting point of sighting vessels is
determined arbitrarily and is taken as the origin of x axis. The position at the left
end of the high density area is set as x in the space 0-1.When part of the two
adjoining high density areas is located on each of the two ends of this unit space, the
position of the left end of the right side area is taken as x The proportion of high
density area in the unit space is w. Distribution density in high density area is
constant at (bt+d).

Proceeding speed: the speed in the high density area is v times that in the ordinary
area (0Sv=1).

Average density for the entire area: b(l - w) +(b+d) w=b+dw=dm. When whales
are distributed only in high density area, b=0, and the density in the high density
areaisd -

Discovery process: all the schools on the sighting track are discovered, and there is
1O MISSing.

II1. Actual proceeding distance per day ¢ number of schools sighted n and average
density w/

3.1 In case where high density area is covered completely when the survey in a day
is ended

L —— r-"—l“'"# |
0 X L ! 1

Fig. 1
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Assuming that the survey is ended just at the right end of the high density area, and
denoting x in this case as xi,

x,=!—w

Neither n nor ¢ changes within the range of 05xSx.

n. = o(l-w/v) + (btd)w = b(l-w/v+w) + dw y W
.= 1 -wiv+tow

Substituting & into formula of x,
X1 =1 - w/v (2)

If wiv>1, this case does not occur because sightng vessels cannot pass the high
density area even if x=0.

3.2 Incase a part of the high density area is left unsurveyed

Two cases are considered: (1) where the high density area is continuous; and
(2) where it is separated into two parts at each end of the space.

(1) Where one continuous high density area is exist

| — r"‘“‘"Tl Fig. 2

Let’s denote x by x2 when the right end of the high density area touches the right end
of the unit space.

Ko = 1 - w (3)
In the section of x1<x<xz,
= bx + (h+d)v(1-x) = b{x+v(l-x)} + dv(1-x) }(4)

1]

x + v(l-x) = v + (1l-v)x
Formulae for n and ¢ when x=x2 are obtained by putting x—=(1-w) in (4), and

na = b(l-w) + (b+rd)wy = b{i-wtwy) + dwy

f2=1-w+ wv

} (5)
When x takes other value than x2, it always becomes ¢ < . £ is the maximum
possible proceeding distance.

This case could occur in either wvS1 or wiv>1.

(2) In case where the high density area is separated to the right and left ends of
the space

There are three possible cases when the high density area is separated to the right
and left ends{D the case where the vessel is in the right side section of the high
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density areas,® the case where the vessel is in the ordinary area between the two
high density areas, and @ the case where the vessel is in the left side section of the
high density areas.

® — I""HT_‘*_!
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@ el R | S— P Fig. 3
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As seen in 3.1, shift of the passed portion of the high density area will not modify o
and ¢as far as it is in the left side of the arrow mark in Fig. 3 . Similarly, unpassed
portion of the high density area will not modify n and ¢even if it is moved within the
space right of the arrow mark. When this principle is applied to each case, it is
evident that each of the cases is identical with the case shown by dotted line in Fig. 3.

@ is identical with the case when x=x2. n and ¢ become n2 and & in (5). This case
occurs when xe<x = a.

® occurs when x> 2 and is identical with the case of x=x in Fig. 3 and (4) can be
apphed. Here x'is

¥ =1 - {w-(1-x)}
From{4), ¢ at this time is
I =wv+ (1-v¥
Deleting ¢ from two formulae above, we get
X = 1+ (L-w)/v - &/v (6)

In case wiv= ], it is possible to pass through the high density area of the width of w
even when x=1 (the saiue as x=0). Therefore, the range of x isz Sx<1. In case wiv>1,

it is not possible to pass through the high density area at the left end when 1-x<w-v.
Therefore, the range of x where this case applicable is @<x< L-w+v.

@ is the same as the case of x=0. Here it is not possible to pass through the high
density area, and this case is confined 0 when wiv>1. Putting x=0 in (4), following
formula is obtained

na = {(b+d)v = by + dv: iy = v N
3.3 General relations between n and ¢

Generally, there exist the following relations between n and £ Denoting the length of
high density area actually passed by w,

wo/v b (- w) = 1 (8
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is obtained because the total time span is 1. Consequently, there exists a relation as
= bl + dw, = bt + d(L-D)v/(1-v) (9
3.4 Average density n/ corresponding to various values of w/v and x

Alist of formulae of n/ is presented in the following for all the cases given in 3.1 and
32

(D wh=1
i) 0 S x < i-w/v: a/l = n./1, = b + dw/(L-w/v+w)
it) L-w/v S x < l-w: n/i = b+ dv(l-x)/{v+(l-v)x}
I QAL D
1-v  x+v/(1-v) )
iii) 1-w & x € l-wewv: n/i = na/ts = b+ dwe/{l-w+wv)
iv) Ll-wtwv & 2z € 1: a/i = b & dvli-x Y/ {v+{l-v)}x'}:
=1+ (L-w}/v - x/v
(2) wiv>1
i) 0 € x< L-w: same as (i} in (1) w/v &1
111) 1-w € x € l-w+wv: same as iii) in (1) w/v &1

iv) l-wtwy $ x ¢ l-wtv: same as iv) in (1) w/v £ 1
v} l-wtv S x < 1: a/l = b+ d

IV. Expected value, relative bias and variation range of daily observed average
density n¥ and ratio of expected values of n and ¢ when x is distributed evenly over
0-1

Expected value of n¥ is obtained by expressing n/ as function of x, and integrating it
regardmvxﬁ:rtheranneof()tol Le. -

E(n/1) = J' n/i dx (10)
The relative bias is given by
= {(E(n/1) - do}/da = (E(a/1) - (b + dw)}/(b + dw) (11)

The case of w/v=1 and the case of wA>1 are considered separately.

41 wi=1
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The range of x, 0~1, for integration is divided into four seetings as in 3.4 (1). When
Integration is done, the following formula is obtained (for derzvation of formula, see
Appendix 1 (1) ).

[ n/f dx = b+ d(- wv/{(L-w/v+w) (i-w+wv))}
° + v(1+v)/{1-v)?® ta{(l-w+wv)/(L-w/v+w) }) (12)

It should be noted in this formula that the term with b and that with d are
completaly separated. The value of b is stmply added to the other term, and-no biasis
mcluded in this part. Expressing the portion inside the [ ] relating to d in (12) by
Fi(w, v),

E(n/1) = b +d F(w, ) (13)
is obtained. The relative hias is then
RB = d(F:i(w,v) ~ w)/(b + dw)
= (dw/b)/(1 + dw/o) - {F((w,v)iw - 1) (14)

RB is determined by dw/b, w and v. These values will be obtained from observed data
(Appendix 2). Here, the maximum value of n# is nv/1 and the minimum value is
n2/e.)

42 wh>1

Integration range is divided imto four sections as in 3.4 (2). The result of integration
is given by the Hllowing formula (See Appendix 1(2))

f o/t dx = b+ dl(w-v)/(1-v) - v(l-w)/{(1l-w+wv)(1l-v)}

’ + oy (b+v)/(1-v)? in((l-w+wv) /v})  (15)

Similarly to (12), b and the term with d are completely separawd In the same way as
in (13), it is expressed

E(a/t) = b+ d Frelw.v) C(18)

and the relative bias is
\ 17
RE = {(dw/b)/(1 + dw/b) - (Fo(u, vi/o - 1) S
The parameters included here are also dw/b, w and v. The maximum value of n# is
b+d and the minimum value is n2/e.

4.3 E@®)and BE(¢)

Next, bias in the conventional estimation formula 2n/2¢ is considered. Here, it
can be assumed that expected value of this estimate gradually approach E@)/E(¢) as
the number of observations increases. And hence the characteristcs of E@m)YE(¢) is
examined here. The expected value of n or ¢is given by the area surrounded by the

line for n or ¢ and the x axis in the range of 0-1. As we see in (1), (@), (5) and (7), the
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line for n or ¢ against x is either constant or straight line for each interval Therefore
the area is obtained as follows,

Dwhih=1
Since 4=1— wi+w and e2=1l-wtwv
EC2) = (l-w/v+w)(1-w/v) + (L-wtwv}wv
+ {1~w/2-(1-v}/v}{w/v-wv)

= 1+ w(l-v)/v-{w/2- (1/v+v}(1l-v) - 1} (18)
And from(9)
E(n) = bE(2) + dv/(l-v)-(1-E(1)) (19)
i) wir>1
Since 4a4=1— witwv and a=v
B(2) = (L-w+wydwy + viw-v) + {i-wtvtwv)/2 - (l-wtv-wy)

13

1~ w(l-v)}{{l-v}{1/w-w)/2 + 1) {20)

Asfor o, (19) is applied as it is.
V. Bias in population density estimates
5.1 Characteristics of n/¢

With respect of range 0-1 of the values of w and v, (Fi(w,v)w-1) included in (14) and
(17ereshown in Table 1. Fi(w,v) is applied for the case of wiv=1, and Fu (w,v), for
wiv>1. If distribution density b and d are given, E(m/dand RB are obtained through
(13) and (14) or (16) and (17). Further, when b=0, ie. whales are distributed only
within the high density area, (Fi (w,v)fw - 1) gives RB directly. When b0, the
coeffident (dw/b)/{*+ (dw/b) } get smaller when dw gets smaller against b, that is
heterogeneity in distribution is smaller, and then the values of RB also become
smaller. As one example, Table 2 shows E(n/),the range of o/ and RB for dw/b=3 and
b=1 and hence b+dw=4, where dw is relatively small E{n/) bas positive bias in all
cases.

Table 1 and Table 2 show that there is no bias when v=1.0 or 0, or w=1.0 or 0, but
this does not have any significant meaning. RB tends to be high in the vicinity of
w=v, and it can exceed 1 when both w and v become extremely small In the
range of w>0.5 or v>0.5, RB is relatively small, and in the case of dw/b=3 ( Table 2), it
seldom exceeds 10%.

Table 2 shows the range of o/ together with E(@/%. The observed value for each
sample can vary within this range. Iu case v>0.5, the minimum value is above 60%
of the true value, and is higher as the w is larger. The maximmum value is below
175%, and becornes the largest at w=v. In case w>0.5, the minimum value at v>0.2 is
over 50% but is lower when v is smaller, while the maximum value reaches 175%
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where v is small In the case of w/~¥<1, the maximum value is applied to the entire
region of x of 0Sx=1 - wi. When w=0.1 and v=0.5, for example, all the n¥takes the
value of 4.333 between O and 0.8 of x. If x is given arbitrarily, this value is obtained
eight out of 10 times.

In Table 2 dw/b=3 is applied, and hence d=3/w if b=1. Sicnee v is considered to be
reduced as d becomes higher (Appendix 2 (2) ), care is needed when cbserving this
Table. For example, v becomes small when w is small, and in the extreme, when w—
0, it becomes d—+e2, v—Q.

Appendix 2(4) shows some examples of the observed values for w, v, dw/b and others.
According to these data, it may be assumed that w=0.1-0.2, v=0.05-0.1 and dw/b=3~
10. Looking at this range of w and v for dw/b=3 in Table2, bias of E{n/) could reach
almost 70%.

5.2 Bias in E(}/E() and comparison with E@/9

E(n) and E@ are calculated from (18), (19) and (20), and their ratios are shown in
Table 3. Here, it is assumed dw/b=3 and b+dw=4, same as in Table 2. The value of
E@)/EQ is slightly larger than the true value in case wiv=1. On the other hand,
when wiv>1, slight positive or negative bias is introduced for v>0.3. If w>0.1, then
considerable negative bias occurs in the range of v<0.1, and when v=0.05, the bias is
about 50%. If dw/b becomes larger, the degree of bias gets higher but the direction of
bias, positive or negative, will be more or less unchanged. The ratio of Em)/E@ to
E(n/) is also shown in Table 3. All of the values of this ratio is smaller than 1. If v>0.3,
this ratio is mostly over 0%, but sharply declines as v drops, to around 50% at
v=0.05. When considering that the value of v in JARPA is around 0.05-0.1, the fact
that the population abundance estimate in JARPA stands about half that of the
IDCR could be explamed.

VI. Discussion and conclusion
6.1 About models

The model used here assumes that there exist one high density area as a
rectangular distribution with  density (b+d) and length w. Distribution of actual
whale schools is more irregular. However, as we have already seen in Fig. 3, when
the proceeding distance of certain ¢is given, the form of distribution of actual schools
within already-passed area, or not-passed area is not relevant. Therefore, generality
would not be lost by having the high density area represented by rectangular
distribution when certain n and ¢ is observed. It is assumed here that, in obtaining
expected values, the left end of high density area X is distributed uniformly
between 0 and 1. But in an arbitrary distribution, the distribution of left end of
corresponding rectangular area to n and ¢ will oot necessarily satisfy this condition.
Therefore, there 1s a possibility that expected values are distorted. However, in case

where relatively clear high density are? ?.re distributed randomly as Kishino &
9



Kasamatsu (1987) used in the simulation, it may be considered that this medel can
approximate actual situation fairly well

In obtaining expected values, it is assumed that the values of w, d, b and v are the
same for every high density areas. In actuality, they change according to areas and
this models will not fit the reality. However, if these values are limited in a relatively
narrow range and are distributed randomly, it may be safe to think that the
conclusion obtained here is reasonable, at least qualitatively.

This model does not specifically taken into consideration the relation between v and
d It is because a constant d value is assumed for all high density areas. However, in
actuality , the relation as (2. 3) in Appendix 2 could be postulated. Although it is
possible to introduce this relation into the formula, it will make things more complex.
In case where v and d are related, the idea of having the arbitrary distribution
represented by rectangular distribution as mentioned before would become invalid.

It is assumed here that all whale schools will be sighted In actuality, however,
missing rate is relatively high If the sighting rate is not related to w, d or b, it could
be expected that this impact is not substantial. Analytical examination by means of
a model will make it easy to grasp features of entire picture. In the resuits of
calculation here general characteristics of E(n/) and E(n)yE@ were shown. It is
expected that these characteristics will be preserved for more complex system, but it
1s necessary to execute a simulation through more realistic medels in order to discuss
it in more detail

6.2 Bias and variation of population density and sampling ratio.

Assuming that actual situation can be seen by means of simple models, let's have
look at characteristics of population density estimates. E(n/) has positive bias of 25-
67% for the actually observed range of w=0.1-0.2 and v=0.05-0.1. Therefore, the
effect of night-time idle cruising cannot be sliminated even by formula of Burt &
Borchers. On the other hand, in the method used in JARPA, positive or negakive
biases ate generated. There is no bias when w is close to or a little larger than v but,
when v becomes small and the frequency of idle cruising increases, negative bias will
increase sharply. It is possibile that it becomes about half of the true value in the
actually observed range of w and v.

The formula used for JARPA. data is the same as the formula to calculate CPUE.
Often, catcher searching hour (CSW) is used for effort. CSW is considered to
decrease in a high density area because the total hours for handling whales would
increases within a fixed working hours of a day as more whales are taken. Therefore
CPUE for entire area tends to underestimate whale depsity (Zahl, 1982, 1983, Cooke,
1685). The bias is increased as handling time per whale is increased, and this
situation is just the same as the case where v becomes small in sampling vessels.

Variance of the estimates is not calculated here, but the range of n/2in Table 2 should
(10)




be noted. When v becomes small, the range of n# extends from 1/4 to 8-fold of the
true value. As the variability of density between unit spaces is not taken into
consideration, variation of n here is a kind of measurement error. In evaluating the
error in actual estimates, coefficient of variation affected by both spatial variability
and measurement error is obtained and so there may be no problem for evaluating
error. Nevertheless, the precision of population abundance estimates must be
deteriorated considerably. *

Biological data from individual whales taken in different days are lumped together
within the same siratum. Therefore, estimation of biological parametevs is
considered to follow the same manner as used in JARPA formula. The fact that
E@VE(@© could have negative bias means that sampling ratio in the high density area
could be lower than that of the ordinary area. If there is no difference in biological
parameters between the high and low density areas, no problem occurs about
difference in sampling ratio. However, if there exist differences, problem will arise for
representativeness of samples.

6.3 Future steps to be taken

The procedure of establishing a proceeding distance per day and carrying out night-
time cruising when this distarce is not covered is very advantageous for covering the
extensive sea area thoroughly and implementing the survey as planned. But bias
will be introduced into population density estimates and further problem will be
brought about regarding representativeness of samples. By formulae proposed to
date, bias in density estimates is not eiminated Furthermore, no consideration has
yet been made regarding correction of distorted sampling ratio. In order to resolve
these problems, the following measures will be advised.

1) examine whether differences in biological parameters exist between the high
density area and ordinary areas. If it is shown that there exdst differences, high
density area and ordinary area should be treated as separate strata (Zakhl, 1983).

2} develop methods to correct bizs in population size estimates. Simulation method
would be effective (Clarke & Borchers;1997). As E(n#) has positive bias, geometric
mean of n# may be a candidate for better estimates. Usually, variation of the value of
n is assumed to follow log-normal distzibution, and it may be reasonable to apply
geometric mean.

3) develop a sampling procedure not requiring night-time cruising. Schweder (1998)
proposed a method of covering the entire area without night-time cruising, by
modifying sampling ratio of schools depending on school size. Although the
practicability of this method is unknown, this idea deserves thorough examination.
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Appendix 1 Integral calculation to obtain expected values of E(n/d
(1) Integration when wiv=1

Of the four sections in 3.4 (Leach of () and (i) is constant regardless of x
Therefore, the value of n/ should be multiplied by the length of each section. ()
becomes the same formula as if) when it is expressed by x'. Therefore, transforming
the variable for integration from x to ¥, and putting dx= - vdx’

L

{  n/t dx !'! (b + dv(t-x")/{v+(L-v)x })dx

l-w+wy | ~w+wy

{ =~w

[ G+ dv(l-x ) /(v (L-v)x Yvdx (1.1)

| —w/ ¥
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This is the same as the integral of (il) as multiplied by v.  (if) becomes,
|-

i (b + dv(1-x)/{v+{1-v)x}]dx

L-wriv

L = L=w

[ (b - dv/(1-v)Mdx + dv/(1-v)3] (1/{x+v/{(1-v)})dx

l-wrvy l=—wsv

(b - dv/(1-v)}(w/v-a} + dv/(1-v)* fa({l-wiv/(1-v)}/{1-a/v+v/(1-v)})
bw(l-v)/v - dw + dv/(1-v)2? in((l-w+wv)/ (L-w/v+w)).
Adding up integrals of 1) through iv), expectation of E(n/) will be

(L1-w/v) {b+dw/(1-w/v+w)} + wv{b+dwv/(l-w+wv)}

[ o/t dx
° + (1+v) {bw(l-v)/v - dw} + dv(l+rv)/(1-v)2 tn({(l-w+wv)/(1-w/v+g))

b+ dlw(l-w/v)/(1-w/vtw) + w?v?/(l-wtwv) - (L+v)w)
+ dvll+v)/(1-v)? tnl(l-wsav)/(1-w/v+w))

Inside ofthe () ofsecondtermis—wv/ {(1-witw)(l-w+wv)} |
and then E(n/) is

fln/i de = b+ di- wv/{(L-w/v+w) (L-wtwv)} ‘
° + w(1ev)/(1-9)® tn{(l-w+av)/(1-w/v¥w)}] {1.2)

and the formula (12) in the main text is obtained.
(2) TIntegration when wiv>1

Of the four sections in 3.4 (3), (i) and (v) are constant. As for the integral of (iv), x is
transformed to x' to obtain a similar formula as in (1.1). Here, the range of
integration is from O to (1 - w). Integral of (i) is

1

{ _Eb bodw(l=2)/{v+(1-v)x})dx

Q
= (b - dv/(L-v)}(1-w) + dv/(1-v)* In((L-w+wv)/v]
Adding up (i) through (¥), the expected value E(n/4) is

1

[ n/t dx = b + d(w?vZ/(l-w+av) + (w-v) - (L+v)(1-w)v/(1-v)]
° + dv(l+v)/(1-v)? 1n((l-w+wv)/v]
Insddeofthe () ofsecond term is rewritten and E(n/) becomes

[/t dx = b+ dl(w-v)/(1-v) - v(l-w}/{(1-wtav)(1-v)}} ‘
o + v(l#v)/(1-v)? in{(l-w+wv)/v}] (1.3)

and the formula (15) in the main text is chtained.
Appendix2  Estimation of values of parameters contained in the formula,

D w (13)



Data from dedicated sighting vessels can be used for estimating w. In this case, it is
assumed that v=1. w is the size of high density area but it is also the proportion of
high density area within the unit space. When more than one high density areas are
observed within a unit space, total length of all high density areas is taken as the
value of w. In actual surveys, the resulted proceeding distance of a dedicated sighting
vessel per day is variable around 100 miles. Denoting this distance by & and the
length of j th high density area by wj, w can be estimated as in the following:

w=>0Lw; /i, (2.1)
There exists a problem of how to determine the range of the high density area, but
generally, boundaries are fairly clear.

@ v

The actual proceeding distance of sampling vessels is assumed as ¢ and total length
of the high density areas, wo, as 2 wj. The speed in the high density area is v and
that in the ordinary area is 1, and then it can be write.

EWJ/V + (i - EWJ) =1
From this formula and data from sampling vessels, v is estimated by

v = (Dw;/10)/(L - 1/1o + Twi/lo) (2.2)

It is considered that v 1s related to density. Let’s assumed that the proceeding is
halted at each unit discovery for a time of AAt. In the high density area, there are
discoveries of (b+d) Ax within the distance Ax. Assuming that effect of bAx is
already incorporated in the pre-determined proceeding distance, the reduction of the
speed is related to the par t o fdAx As the time required for passing Axis {(Axtd
OxAt} | the reduction of the speed is

v = dx/{4x + ddxdu) = /(L + ddt} - (2.3)
v is given by d and At. When n and ¢ are given as observed values, At is
calculated by

At = (1 - 1/4q) / (n - bt/iv) (2.4)

3) d. banddwh
Here data from dedicated sighting vessel are used. Assuming that the total number
of discovery in the high density area to be nb, it follows d+b=ni'w, and further

b= (n-n)/(L~w), d=(a/w-n0)/{l-w (2.5)

are obtained. It is anticipated that d is fairly larger than b. The proportion of schools

distributed in the high density area can be estimated by nb/n. Using these formulae,
(14) .



the following is obtained.
dw/b = (a, - wn)/(n - nu) (2.8)
(4) Examples of numerical value
Applying a part of the data from the survey in Area V in 1993 (data for January 15
February 13 compiled by Fujise), values of these parameters are calculated
tentatively and folloing values are obtained.

w=0.1~0.24, v=0.02~0.11, At=0.11~0.36, d=34~102, b=1.1~5.9, dw/b=2.6~12

As reference values, it may roughly be put w=0.1~0.2, v=0.05~0.1, dw/b=3~10.

Table 1 Value of F:{w,v)/w - 1. This value corresposds to the relative bias
(RB)} of E(n/t) when whales are distributed ¢nly in high density areas
(b=0). For other values of b, this value is multiplied by (dw/b)/{1+{dw/b)}
to give RB. ;

v \ w 0 0.1 0.2 0.3 0.4 0.5 0.7

1.0
0 0 0 0 0 0 0 0 0
0.02 0 0.4217 €.2091 0.1373 0.1004 0.0772 0.0470 O
0.05 0 6875  .3396  .2213  .1599  .1207  .0882 O
0.1 0 .9000  .4423  .2885  .203L  .1499  .0775 O
0.2 0 .2406  .5008  .3179  .2208  .1573  .0717 O
0.3 0 (1164 .2473  .3030  .2063  .1429  .0595 0
0.4 0 .0649  .1305  .1840  .1803  .1220  .0474 0
0.5 0 0372 0723  .1012  .1159  .0995  .0365 0
0.7 0 .0103  .0192  .0262  .0305  .0315  .0188 0
1.0 0 0 0 0 0 0 0 0

(15)



Table 2 Characteristics of n/l. (1) E(n/!), (2) range of n/f, (3) relative
bias RB of E(n/1). b=l, dw=3, true density d.=b+dw=4.

v \ w 0 0.1 0.2 0.3 0.4 0.5 0.7 1.0
0 (1) 4 4 4 4 4 g 4 4
() 1- 1 - 1- 1 - 1 - 1 - 1 - lord-
dorw 31 16 11 8.5 7 5.286 4
(3) 0 0 - 0 0 0 0 -0 0
0.02 (1) 4 5. 285 4.627 4 412 4.301 4.231 4,141 4
(2) 1.06- 1.067- 1.075- 1.085- 1.099- 1.118- 1.191- 4 -
4 31 18 11 8.5 7 5.286 4
(3) 0 0.3163 0.1569 0.1030 0.0753  0.0579  0.0352 0
0.05 (1) 4 6. 053 5.019 4_664 4,480 4.362 4. 205 4
(2) 1.15- 1.166- 1.185- 1.210- 1.242- 1.286- 1.448- 4 -
4 31 16 11 8.5 7 5.286 4
(3) 0 “0.5156 0.2547 0.1660 0.1199 0.0905 0.0511 0
0.1 (1) 4 8. 700 5.327  4.856 4.608 4.450 4.233 4
(2) 1.3 - 1.330- 1.386- 1.411- 1.469- 1.545- 1.811- 4 -
4 31 16 11 8.5 7 5.288 4
(3) 0 0.6750 0.3317 0.2141 ©0.1524 0.1124 0.0581 0
0.2 (1) 4 4,722 5.501 4,954 4.662 4.472 4.215 4
(2) 1.6 - 1.852- 1.714- 1.789- 1.882- 2 - 2.364- 4 -
4 8 16 11 8.5 7 5.288 4
(3) 0 0.1804 0.3752 0.2384 0.16% 0.1180  0.0538 0
0.3 (1) 4 4,349 4.742 4.909 4.819 4.429 4.179 4
(2) 1.9 - 1.968- 2.047- 2.139- 2.25 - 2.385- 2.765- 4 -
4 4.913 6.625 11 8.5 7 5.286 4
(3) 0 0.0873 0.1855 0.2273 0.1547 0.1072 0. 0446 0
0.4 (1) 4 4.195 4.392 4.552 4,541 4,366 4,142 4
(2) 2.2 - 2.277- 2.364- 2.463- 2.579- 2.714- 3.069- 4 -
4 4,529 9.286 6. 455 8.5 7 5.286 4
(3) 0 0.0487 0.0979 0.1380 0.1352 0.0915 0, 0355 0
0.5 (1) 4 4.112 4.217 4.304 4.348 4.298 4110 4
(2) 2.5 - 2.579- 2.8567- 2.765- 2.875- 3 - 3.308- 4 -
4 4333 4.175 5. 286 6 7 5.288 4
(3) 0 0.0279 0.0542 0.075% 0.0870 0.0746 0.0274 0
0.7 (1) 4 4. 031 4.058 4.078 4.092 4.095 4,057 4
(2) 3.1 - 3.165- 3.234- 3.308- 3.386- 3.471- 3.658- 4 -
4 4.134 4.281 4,444 4.621 - 4.818 5. 286 4
(3) 0 0.0078 0.0L4d4 0.0196 0.0229 0.0237 0.0141 0
1.0 For all w values: (1) 4: (2)4-4: (3) 0
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Table 3 Palues of E(a)/E(1), (line 1) and its ratio to E(n/t), (line 2).

b=l, dw=3, true demsity d==b+dw=4.
v \ w 0 0.1 0.2 0.3 0.4 0.5 0.7 1.0
0 (1) dorl 1 1 1 1 1 1 lord
(2) lor0.25 .25 0.25 0.25 0.25 0.25 0.25 0.250rl
0.02 (1) 4 1.823 1.586 1. 555 1.595 1.695 2.118 4
(2) 1 0.3462 0.3428 0.3524 0.3708 0.4005 5.260 1
0.05 (1) 4 2.867 2.306 2.203 2.244 2.377 2.926 4
(2) 1 0.4728 0.4394 0.4723 0.5008 0.5449 0.6958 1
0.1 () 4 4,215 3.199 2. 963 2.946 3.041 3.437 4
(2) 1 0.6291 0.6004 0.B10L 0.8392 0.6833  0.8121 1
0.2 () 4 4.478 4.288 3.833 3.685 3.667 3. 799 4
(2) 1 0.9483 0.7796 0.7798 0.7903 0.8199 0.9013 1
0.3 (1) 4 4.288 4.431 4.272 4.037 3.944 3.933 4
(2) 1 0.9860 0.9344 0.8703 0.8740 0.8905  0.9413 1
0.4 (1) 4 4.174 4.294 4.322 4.213 4.080 3.995 4
(2) 1 0.9949 0.9778 0.9494 0.9278  0.9344  0.9856 i
0.5 (1) 4 4.103 4.182 4.223 4.214 4.143 4.025 4
(2) 1 0.9980 0.9917 0.9813 0.9893 0.9638 0.9794 1
0.7 () 4 4.030 4053 4. 070 4,071 4.0175 4. 037 4
(2) 1 0.9997 0.9990 0.9978 0.9964 0.9952  0.9952 1
1.0 For all w values: (1 4: {2) 1

(17)
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Addendum
Bias in density estimates when the speed of whale sampling vessels
is reduced in high density areas

5. TANAKA (Institute of Cetacean Research)

I'n Table 2 of the main text, it is shown that E(n/?) has positive bias
regardless of w and v values. As a method to remove this bias, geometric mean
of daily o/! values, instead of arithmetic mean, may be suggested. It is often
assumed in the sighting survey data that o values are distributed log-normally,
The ranges of n/1 given in Table 2 indicate that the distribution of n/i has
a long right hand side tail, By taking logarithm of n/! values, a more
symmetrical distribution of o/t may be obtained.

To ascertain this , exp(E{ln(n/t)}) are calculated for various values of
wand v by a numerical integration method. The results are shown in Addendum
Table 1. IFf v»0.2, the bias in density estimates will be reduced considerably,
although a small positive bias stii! remzins. The bias is smaller them 5%
when v»0.5. In case of v<0.2, negative bias may be introduced. 4t v=0.095 and
w=0.2, for instance, the negative bias could be as high as 20%. Generally,
geometric mean will give a smaller bias but it could be either positive or
negative when v value is small,

Addendum Table 1. Comparison of arithmetic mean, E(n/!), and geometric mean.
explE{Iln{n/1)}). True value is 4 with b=l and dw=3.

v oo\ w 0.1 0.2 0.3 0.4 0.5 0.7
0.0% n/! 6.063 5.019 4.664 4. 480 4,362 4.205
ln(n/2) 2.67 3.24 3.2 3.38 3.52 3.81
0.1 n/t §.700 5.327 4.836 4. 609 4. 450 4.233
la(n/!) 4.63 2.86 3.71 3.73 3.78 - 3.94
0.2 n/1 4.722 5.501 4.954 4. 662 4.472 - 4,215
la{n/2)} 4.38 4.50 6. 13 1. 04 4. 01 4,01
0.3 a/i 4.349 4,742 4,909 4.619 4,429 4.179
ln{n/2) 4.21 4.38 4.36 4,17 4. 09 4,03
0.4 n/{ 4,195 4.392 4,532 4, 541 4, 366 4.142
la{n/ 1) 4.12 4, 2 4 28 4. 22 4.12 4,03
0.3 n/i 4.112 4,217 4 30¢ 4. 348 4. 298 4.110
In(n/4)  4.07 4.13 4,17 4.13 4,13 4.03
0.7 a/§ 4.031 4.053 4. 678 4,092 4. 095 4,057
tn(n/1) 4.02 4,04 4.03 4,05 409 4.03
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