ON THE OILS CONTAINED IN VARIOUS BLUBBERS OF NORTHERN ELEPHANT SEAL, MIROUNGA ANGUSTIROSTRIS

HIDEO TSUYUKI*

INTRODUCTION

The elephant seal or sea elephant is the largest of all the marine carnivores and belongs to the seal family. There are two species, the Northern and the Southern. The former (*Mirounga angustirostris*) is found off the coast of California, while the latter (*Mirounga leonina*) is distributed over a wide range in the Southern seas.

As to the study on the seal family oil, we find various reports on the seal (*Phoca vitulina*) oil, including Tsujimoto's work on the Saghalien seal oil and Ueno and Iwai's study on the Antarctic seal oil (Bauer & Neth, 1924; Tsujimoto, 1916; Ueno & Iwai, 1939; Williams & Makhrov, 1935).

However, the oil of the elephant seal has remained unexplored to this day, still less the differences in the properties of the oils contained in the various parts of its body.

The writer was fortunate enough to obtain elephant seal oils from various blubbers and examine their properties.

The writer wishes to express his thanks to Dr. H. Oguni and Dr. H. Hosoya who were kind enough to present him the Northern elephant seal oil. He also wishes to express his appreciation to Dr. H. Omura and Prof. A. Shionoya for their kind advices.

MATERIAL

In January, 1955, three Northern elephant seals were caught off the coast of Mexico, and the 'Nihon Dōbutsuen' (Japan Zoological Gardens) bought them in December of that year. Two of them died soon after their arrival in this country, and the third one was shown to the public at the 'Sekai Dōbutsu Hakurankai' (World Animal Exhibition) held in Kyoto, where it also died on the 7th of June, 1956. It was dissected on the 11th of June at the Faculty of Agriculture & Veterinary, University of Nihon in Tokyo (fig. 1). As its internal organs had already been spoiled, there was no proving the cause of its death. Fortunately, however, there was no trace of putrafaction in its blubber.

* Department of Fisheries, Faculty of Agriculture & Veterinary, University of Nihon.

H. TSUYUKI

The details of the Northern elephant seal used in this experiment are shown in table 1. After its capture, the elephant seal had been usually fed with living mackerel and sometimes with living carp.

Fig. 1. Elephant seal, Mirounga angustirostris.

Sex	Presumptive years	Presumptive body weight (kg.)	Body length (m.)	Girth of abdomen (m.)	Girth of neck (m.)	Fore flip- pers (cm.)	Hind flip- pers (cm.)
Male	5-6	2000	4.40	2.96	1.67	50	66
				5100	1.01	52	70

TABLE 1. DETAILS OF ELEPHANT SEAL

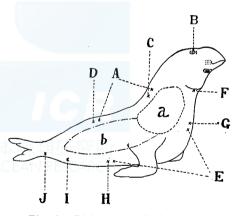
EXPERIMENT AND RESULTS

Oils were extracted from various blubbers as shown in table 2 and fig. 2. The sampling methods for oils are shown in table 2.

Physico-chemical studies were conducted with the sample oils, the results of which are shown in table 3.

Unsaponifiable matter and mixed fatty acids were obtained from the oils, and their properties were examined by oridinary methods (tables 3 & 4).

Solid-and liquid fatty acids were separated by the lead-salt alcohol method (Twitchell, 1921), and their properties were examined in an ordinary manner. The melting points of the solid fatty acids were determined in a capillary tube. The results obtained are shown in tables 5 & 6.


The writer of this paper summarized the results obtained as follows :

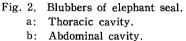

Sample Kinds of blubber		of blubber Oil conte of blubber (cm.) Oil conte		Sampling method for oil		
A	Dorsal blubber of thoracic and ab- dominal cavity	7–10	high	Pressing method		
В	Blubber of frontal (part betwen eyes)	1-2	low	Pressing method first and then parching		
С	Dorsal blubber of thoracic cavity	10	high	Pressing method first and then parching		
D	Dorsal blubber of abdominal cavity	7	high	Pressing method first and then paching		
Е	Vetral blubber of thoracic and ab- dominal cavity	-		Pressing method		
F	Ventral blubber of neck	1-2	low	Pressing method first and then parching		
G	Ventral blubber of thoracic cavity	9	high	Pressing method first and then parching		
Η	Ventral blubber of abdominal cavity	2	low	Pressing method first and then parching		
I	Ventral blubber of pelvis	1-2	low	Pressing method first and then parching		
J	Ventral blubber of hindmost part	below 1	low	Pressing method first and then parching		
K	Blubber of tongue	very thin	low	Extracting method with alcohol and ether		

TABLE 2. KINDS OF BLUBBER AND OIL

(1) The properties of the oils contained in the various blubbers showed only very slight differences. The most remarkable is the difference in the degree of unsaturation of each oil. It is interesting to note that the degree of unsaturation in the tongue oil is very low as in the case of the tongue oil of the sei-whale experimented by Sakai & Mori (1953). The degree of unsaturation of the frontal oil is also very low.

(2) The acid value of the sample oils is very high. This seems to

be due to the large quantity of fatty acids produced at the time of decomposition of the oil by the action of lypase. Apparently the lypase content in the blubber of the elephant seal is comparatively high, and the fat metabolism in its body seems to be active.

	er	Iodine value	84.2	88.6	117.2	98.6	76.3	102.8	113.9	114.1	109.3	103.1	100.1
	Unsapon. matter	Appearance (at 30°C.)	Yellow, viscous liquid	Yellowish brown solid	Yellowish brown solid	Brown solid	Brownish orange solid	Yellowish brown solid	Yellow solid	Yellowish brown solid	Yellowish brown solid	Yellow solid	Yellowish brown solid
E MATTERS	IInconon	matter (%)	1.46	0.65	0.66	0.61	1.42	1.81	1.04	1.03	1.08	0.52	1.67
PONIFIABLE	Indina	value	136.4	105.5	130.2	118.0	140.9	116.4	134.2	133.4	110.4	123.1	90.4
ND UNSAF	Sanon	value	184.9	187.4	181.5	188.6	185.3	179.3	182.6	186.9	186.0	184.5	175.6
OF OILS A	Δrid	value	13.0	27.5	17.5	16.4	11.6	23.2	21.4	20.8	20.9	15.3	28.5
PROPERTIES OF OILS AND UNSAPONIFIABLE MATTERS	 	N ^{BR}	1.4646	1.4610	1.4635	1.4626	1.4650	1.4623	1.4641	1.4638	1.4616	1.4630	1.4597
TABLE 3. P	· · · ·	d ⁴	0.9251	0.9170	0.9195	0.9187	0.9275	0.9180	0.9202	0.9210	0.9173	0.9188	0.9121
	Annearance	$(at 25^\circ C.)$	Yellowish orange liquid	Reddish brown liquid	Reddish brown liquid	Reddish brown liquid	Yellowish orange	Reddish brown liquid	Brown, viscous	Reddish brown	Reddish brown liquid	Reddish brown liquid	Reddish brown liquid
		Sample	A	В	С	Q	ы	ц	G	Н	I	Ţ	K

H. TSUYUKI

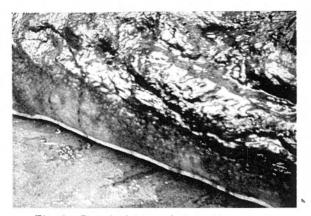


Fig. 3. Dorsal blubber of thoracic cavity of elephant seal.

TABLE 4. PROPERTIES OF MIXED FATTY ACIDS

Sample	Appearance (at 30°C.)	$N_D^{30^{\circ}}$	Iodine value	Neutrali- zation value	Average molecular weight
A	Yellow liquid	1.4590	138.2	189.6	295.9
в	Reddish orange liquid	1.4552	108.6	193.3	290.3
С	Yellow liquid	1.4578	133.2	187.2	299.7
D	Yellowish orange liquid	1.4565	122.9	195.4	287.1
E	Orange liquid	1.4598	142.8	190.6	294.4
F	Orange liquid	1.4564	120.1	183.9	305.1
G	Yellowish orange liquid	1.4589	136.9	188.3	298.0
Н	Yellowish orange liquid	1.4589	135.2	193.1	290.5
Ι	Yellow liquid	1.4559	113.2	190.2	295.0
J	Yellowish orange liquid	1.4572	126.3	188.2	298.0
К	Yellowish orange liquid	1.4450	94.2	181.5	309.1

TABLE 5. PROPERTIES OF SOLID FATTY ACIDS

Sample	Percent. in mixed fatty acids	Appearance (at 25°C.)	${N}_D^{50^{ullet}}$	Melting point (°C.)	Iodine value	Neutral- ization value	Average molecular weight
А	25.11	Yellowish white solid	1.4347	42.5-45.0	23.1	211.5	265.3
В	25.07	Dark brown solid	1.4345	42.0-44.5	23.4	207.2	270.8
С	26.43	Yellowish brown solid	1.4350	43.0-45.0	24.6	195.4	287.1
D	30.73	Brown solid	1.4363	45.0-47.0	26.9	202.8	276.7
E	25.05	Yellowish brown solid	1.4355	43.5 46.5	25.6	214.7	261.3
F	33.19	Yellowish brown solid	1.4365	47.5 49.5	27.2	204.3	274.6
G	29.76	Yellowish brown solid	1.4359	45.5-47.5	26.5	209.1	268.3
Η	31.51	Yellowish brown solid	1.4368	47.0-48.5	28.1	213.9	262.3
Ι	26.71	Yellowish brown solid	1.4351	44.0-47.0	25.3	226.1	248.2
J	28.64	Yellowish brown solid	1.4360	43.0-47.0	26.6	207.3	270.7
K	27.77	Brown solid	1.4354	44.0-47.0	25.9	203.5	275.7

Sample	Percent. in mixed fatty acids	Appearance (at 25°C.)	$N_{D}^{ m 30^{\circ}}$	Iodine value	Neutral- ization value	Average molecular weight
A	74.89	Yellow liquid	1.4598	175.4	181.6	309.0
В	74.93	Yellowish orange liquid	1.4570	136.2	187.5	299.3
С	73.57	Orange liquid	1.4593	170.3	182.9	306.7
D	69.27	Reddish orange liquid	1.4585	164.1	191.8	292.6
Е	74.95	Reddish orange liquid	1.4601	180.6	177.1	317.0
F	66.81	Reddish orange liquid	1.4588	165.1	172.9	324.5
G	70.24	Reddish orange liquid	1.4605	183.6	178.4	314.5
Н	68.49	Reddish orange liquid	1.4606	182.1	181.7	308.8
I	73.29	Reddish orange liquid	1.4575	144.7	175.9	319.0
J	71.36	Reddish orange liquid	1.4588	166.5	178.6	314.2
K	72.23	Reddish orange liquid	1.4566	120.1	171.9	326.4

TABLE 6. PROPERTIES OF LIQUID FATTY ACIDS

(3) The amount of unsaponifiable matter in each oil is comparatively small, registering only about one per cent. This fact seems to show that the blubber of the elephant seal is a pure fat accumulation depot.

(4) There is no remarkable difference in the average molecular weights of the mixed fatty acids obtained from different oils. The average molecular weight is lower in solid fatty acids than in liquid fatty acids.

SUMMARY

The oils contained in various blubbers of Northern elephant seal (*Miro-unga angustirostris*) have been studied.

REFERENCES

BAUER, K. H. & NETH, W. (1942). Seal oil. Chem. Umschau, 31: 5-7.

- SAIKI, M. & MORI, T. (1953). Studies on the whale oil-I. Bull. Jap. Soc. Sci. Fish., 19: 611-3.
- TSUJIMOTO, M. (1916). Studies on the Saghalien seal oil. J. Soc. Chem. Ind. Japan, 19: 715-23.

TWITCHELL, E. (1921). The precipitation of solid fatty acid with lead acetate in alcoholic solution. J. Ind. Eng. Chem., 13: 806-7.

UENO, S. & IWAI, M. (1939). Studies on the antarctic seal oil. J. Soc. Chem. Ind. Japan, 42: 784-6.

WILLIAMS, N. V. & MAKHROV, G. A. (1935). A chemical study of seal oil. Schrift. Zent. Forsch. Lebensm. (U.S.S.R.), 4: 157-65.