FERESA ATTENUATA CAPTURED AT THE PACIFIC COAST OF JAPAN IN 1963

MASAHARU NISHIWAKI, TOSHIO KASUYA, TOSHIRO KAMIYA*, TERUO TOBAYAMA**, AND MASAYUKI NAKAJIMA***

INTRODUCTION

The fishermen at some fishing villeges of the Izu Peninsula, Shizuoka Prefecture, engage in fishing for small cetaceans. Their method of fishing is a unique one. When some small fishing vessels find a school of dolphins, cooperating with other ships, they drive it toward the inlet near the villege. The school is driven in and enclosed in the inlet with a net. Then usually they are pulled up and killed.

On January 28, 1963 a school of *Feresa attenuata* composed of 14 porpoises were discovered near the entrance of Sagami Bay and captured at Futo, on the east coast of the Izu Peninsula. All of them were kept alive for some days in a pool of the Ito Aquarium together with other dolphins. Though during this period effort to tame them was made, all of them died within 22 days after the capture, and they were examined.

Feresa Gray is one of the genera about which very little is known. The first specimen was reported in 1827 as *Delphinus intermedius* by Gray but the location of the collection is not known. Gray also reported a second specimen, a type of *Feresa attenuata*, in 1875, the collection location of which is known only as "the South Sea". These specimens are known only from the skulls, and other skeletal and external characters remained unknown until recently. Then Yamada (1954) reported a whole skeleton and some fragments of the blubber collected at Taiji, Japan. This specimen gave us the first knowledge on the whole skeleton and a glimpse of external characteristics. The fourth specimen was captured in 1958 at Yenn, Senegal and a report on its skull was made by Cadenat (1958).

So we think it valuable to report the data on this poorly known genera obtained from the examination of the Futo specimens.

CAPTURE AND KEEPING

On January 28, 1963 a school of *Feresa* Gray composed of 14 porpoises was found by a fishing vessel at a point about 2 km off the north shore of Oshima Is. which is situated at the entrance of Sagami Bay. Their direction of swimming was southerly. Near the area where the school was found, no school of the same species had previously been observed.

After about two and a half hours they were driven by a number of fishing vessels into the Futo harbour, which is situated about 30 km north west from O-

** Ito Aquarium, Ito, Shizuoka.

^{*} The Department of Anatomy, Faculty of Medicine, Tokyo University.

^{***} Enoshima marineland, Fujisawa, Kanagawa.

shima Is. It required about twice the amount of time as compared with other small cetaceans, for example *Stenella caeruleoalba*, to make the drive. During the driving they seemed obedient and sounded shallowly only three times, each of which was for about 3 minutes. Other small cetaceans usually sound deeply many times in order to escape.

In the enclosure of the harbour, they acted in the same manner as in the pool of the Ito Aquarium, some kept themselves perpendicular and others swam slowly in the horizontal postur around the former. They observed the men on the shore with both eyes when they were perpendicular.

Fig. 1. Chart showing the coastal area of Japan.

The porpoises were separated into five groups and transported from the harbour to the Ito Aquarium by truck during the next two days following capture. About a half hour was spent for each transportation, and the condition of the whales seemed fairly well with no vomiting except for one which died in transit during the fourth trip. During the transportation the respiration rate and the pulse rate of all porpoises was counted every five minutes. The average respiration rate fell between 8.4 and 5.1 times per minute, and it showed the tendency to decrease with the elapse of time on the truck. The total average rate of respiration during the transport was 7.1 times per minute. The average pulse rate was 66 times per minute.

body temperature was not observed. The average air and water temperature at the time of the transportation were 8.2° C and 13.5° C respectively.

Except for one male which began to take food all Porpoises died within a week from capture. Of the 12 whales which died in the pool within the week, five could not be observed the condition when dying but the other seven had convulsive fits and sank with their mouths half open after abnormal swimming for 20 minutes to 3 hours. The cause of the death could not be determined.

The one male which lived in the aquarium for 22 days, seems to have died from pneumonia judging from the swelling of limphonodi bronchopulmonales and purulence in the lungs.

Fig. 2. Food consumption of a male Feresa Gray kept alive for 22 days in a pool.

This male first begun to take living sardines 4 days after capture, having rejected squid, saurel and mackerel-pike. From this success we gave food by throwing, mainly in daytime, aiming the standard weight 8 kg of food a day, or five per cent of the presumed body weight of 160 kg. But the standard was attained only for 2 days. Though the animal kept high activity at night, the throwing of food at night did not increase consumption.

Seven days after capture, giving food from hand directly was tried and succeeded easily, but it was stopped on the ninth day due to the decrease of food intake. The food consumption of the specimen is shown in Fig. 4.

The respiration rate in the aquarium is shown in Fig. 3. Each one is the mean number of the per minute rates counted over a five minute period at 10:00 and 14:00. The average rate of respiration of the male porpoise in the aquarium

is 3.9 times per minute and average time spent submerged in the water is 25.6 seconds.

Fig. 3. Respiration rate of the same whale shown in Fig. 2.

TABLE 1. DATES TRANSPORTED AND DEATH OF FUTO SPECIMENS

Specimen	Date	trans	ported	Date	of d	leath	Days kept alive	Sex	Body length
No.									(cm)
1	29	I	' 63	30	I	'63	2	м	240
2	30	Ι	' 63	30	I	' 63	2	М	217
3	30	I	` 63	31	Ι	'63	3	м	215
4	30	Ι	'63	31	I	'63	3	F	215
5	29	I	' 63	1	II	'63	4	F	225
6	29	Ι	' 63	2	II	' 63	5	\mathbf{F}	225
7	29	I	' 63	2	II	' 63	5	\mathbf{F}	221
8	29	I	' 63	2	II	'63	5	М	229
9	29	Ι	' 63	3	II	'63	6	м	223
10	30	Ι	' 63	3	II	'63	6	\mathbf{M}	244
11	29	I	' 63	4	II	' 63	7	F	227
12	29	I	' 63	二/4	II	' 63	R 矢貝 0 井 シ 7 5 P JT	\mathbf{F}	221
13	30	I	`6 3	TE () 4 (II	'63	N RESEATRCH	\mathbf{F}	208
14	29	I	'63	19	II	'63	22	Μ	214

Note: No. 4 is still frozen at Enoshima Marineland. Skeleton of No. 6 is kept at the Zool. Museum, Herbart University by the wishes of Dr. W. E. Schevill.

No. 10 is used to show the internal organs at Ito Aquarium.

EXTERNAL CHARACTERS

The external measurements of the Futo specimens are shown in Table 2 and Appendix I. The ranges of body length in 7 males and 7 females are 214–244 cm and

208–227 cm respectively, and some of both sexes were full grown, which shows that the male grows larger than the female. All of the measurements of tail flukes, flippers dorsal fin and head region made on Taiji specimen by Yamada (1954) fall within the range of the Futo specimens.

Fig. 4. Dorsal, lateral and ventral views of Feresa attenuata.

The sexual difference of the external measurements is found in the length between the tip of upper jaw and middle of reproductive aperture, this measurement is larger in the female than in the male.

TABLE 2. EXTERNAL MEASURMENT OF FUTO SPECIMENS SHOWN IN THE PERCENTAGE OF TOTAL LENGTH

		Range in 7 males	Range in 7 females
1.	Length, total	214 – 244 cm	208 – 227 cm
2.	Length, tip of upper jaw to center of eye	8.7 - 11.4 %	8.1 - 10.8 %
3.	Length of gape	5.4 - 7.2	6.0 - 8.4
4.	Center of eye to external auditory meatus (direct)	3.0 - 4.0	3.2 - 3.8
5.	Length, center of eye to angle of gape	2.4 - 5.8	1.4 - 3.8
6.	Length, tip of upper jaw to blow- hole	6.7 - 11.9	7.2 - 11.1
7.	Anteriormost point of gape to blowhole along the melon	15.2 - 18.1	16.3 - 17.1
8.	Length, tip of upper jaw to ante- rior insertion of flipper	16.8 - 21.6	18.6 - 21.3
9.	Length, anterior insertion of flipper to axilla	6.1 - 6.7	4.0 - 7.0
10.	Length, tip of upper jaw to tip of dorsal fin	54.8 - 61.8	54.3 - 60.6
11.	Length, tip of upper jaw to mid- point of umbilicus	38.6 - 45.1	40.3 - 44.9
12.	Length, tip of upper jaw to mid- point of genital aperture	56.2 - 51.3	57.8 - 61.1
13.	Length, tip of upper jaw to cen- ter of anus	62.8 - 66.8	61.4 - 65.8
14.	Projection of upper jaw beyond the lower	0.9 - 2.5	0.9 - 1.9
15.	Girth, at anterior insertion of flip- per	45.5 - 49.6	45.6 - 53.8
16.	Girth, at anterior insertion of dorsal fin (maximum)	52.6 - 64.7	59.0 - 63.3
17.	Maximum height of body, includ- ing dorsal fin	25.2 - 31.7	27.2 - 32.4
18.	Length of eye	1.0 - 1.4	0.9 - 1.3
19.	Width of blowhole	1.4 - 2.1	1.3 - 2.3
20.	Length of flipper, anterior inser- tion to tip	18.3 - 22.1	14.7 - 22.2
21.	Length of flipper, along anterior edge	20.3 - 24.0	20.5 - 24.4
22.	Length of flipper, axilla to tip	13.8 - 16.4	14.7 - 19.0
23.	Width of flipper, maximum	6.1 - 7.0	5.8 - 7.0
24.	Dorsal fin, height	9.4 - 11.6	9.6 - 10.9
25.	Dorsal fin, length of base	14.0 - 19.4	15.8 - 19.1
26.	Dorsal fin, anterior insertion to tip along anterior edge	17.5 - 21.4	18.3 - 21.3
27.	Dorsal fin, posterior insertion to tip along posterior edge	11.3 - 13.7	9.3 - 13.3
28.	Dorsal fin, anterior insertion to posterior edge (minimum)	12.6 - 15.3	13.9 - 16.3
29.	Width of tail flukes, tip to tip	23.8 - 28.1	23.0 - 28.4
30.	Anterior insertion of tail fluke to notch	6.8 - 8.3	6.9 - 8.8
31.	Anterior insertion of tail fluke to tip	15.0 - 18.2	14.2 - 18.2
32.	Distance, tip of tail fluke to notch	10.7 - 14.5	12.7 - 15.1

Two females were pregnant and the body length of their fetuses, both female, were 205 mm and 530 mm. Their external measurments are listed on Appendix I.

The shape of dorsal fin and tail flukes coincides with that drawn by Yamada (1954). But the flipper is more concaved at the posterior edge and convex at the anterior than the figure of Yamada (1954), so it somewhat resembles with that of *Globicephala* but its length is definitely much shorter. This configuration of the flipper is seen not only in the adult but also in the fetus. The posterior edges of the dorsal fin, flipper and tail flukes of all specimens except the fetuses are indented irregularly. So we think that this shape is formed after birth.

The shape of the head region of our specimens differs from the figure drawn by Yamada (1954), which is a figure reconstructed from the flensed specimen. On his figure the head is too slender. Our specimens show a more globular head with well developed melon.

Fig. 5. Feresa Gray swimming perpendicularly in the pool of a aquarium.

The true position of the flipper seems to be some what anterior than that on his figure. As the position on his figure is an assumed one, it must be incorrect.

A ventral groove was found on the Futo specimens, which starts at the middle point between the flippers and extend in increasing depth to the urinogenital groove. A external beak was not present on our Futo specimens.

The better part of the dorsal surface, head, throat and both side of flipper and tail flukes are coloured bluish black. The inguinal area is covered with a oval white area in which anus and reproductive aperture open. The breast, the area between the two flippers is gray, its boundary area is indistinct and changes gradually into the surrounding bluish black.

The upper and lower lips have irregular white area which seems to be formed after birth.

Above mentioned white or gray areas are easily observed on a carcass, and there is another pale area which is very indistinct on a carcass. It covers most of the flank, from the insertion of tail flukes to the area around the eye, and most of the ventral surface. Its upper margin starts in front of the eye and, increasing its height, attains its maximum height at nearly the middle point of axilla and the anterior insertion of dorsal fin, and then decreases its height till the lowest point near the dorsal fin, then it extend obliquely upward and finally reaches the anterior insertion of flipper. The lower border begins at the same point as the upper and reaches the axilla, and the two pale areas of the left and the right sides untie at the ventral surface immediately posterior to the oval reproductive area.

Fig. 6. Feresa Gray swimming horizontally in the same pool as Fig. 5, notice the pale area on the flank.

CLASSIFICATION INTO SPECIES

Table 3 shows the skull measurements shown in per cent of total skull length of the specimens of the genus *Feresa* already reported, and the ranges of the Futo specimens. Each measurement of the already reported 4 specimens fits fairly well into the range of the Futo specimens. In our specimen the breadth of rostrum at base seems to increase with the body length. B.M. 362 A has a large value on this measurement, which would be due to the advanced age of the specimen. Though the length of the maxillary tooth row is longer in B.M. 362 A and in B.M. 1672 A than in our specimens, this could be due to the difference of the measured points.

In the Futo specimens the depth of temporal fossa is larger in the right side than the left, and the measurements of B.M. 362 A and B.M. 1672 A fall within the range of right side in our specimens. The length of mandibular symphysis is very

short in Taiji specimen comparing with other specimens, it may be due to the difference of point measured.

As mentioned above the breadth of rostrum at base seems to increase with age, other difference of the shape of skull due to age or sex can not be found.

When their small body length (shorter than 250 cm), number of teeth and the shape of skull are considered, our Futo specimens cannot be classified out of the genus *Feresa* Gray. And all of them are classified into *Feresa attenuata* Gray (1875).

TABLE 3. SKULL MEASURMENTS SHOWN IN PER CENT OF TOTAL SKULL LENGTH

		B.M. 362A	B.M. 1672A	Taiji specimen	Yenn specimen	Range in 6 male Futo specimens	Range in 6 female Futo specimens
1.	Total (condylo-basal) length	$362~\mathrm{mm}$	$350~\mathrm{mm}$	$385~\mathrm{mm}$	347 mm	- 356–380 mm	- 365–390 mm
2.	Length of rostrum (medi- um)	47.4%	48.0%	47.8%	47.5%	44.7-49.2%	47.2-48.4%
3.	Breadth of rostrum at base	33.2	30.3	30.2	31.1	27.7-31.7	28.9-31.8
4.	Breadth of rostrum at mid- dle	24.6	21.4	23.1	24.3	23.4-25.1	22.9-24.7
5.	Breadth of premaxillae at middle of rostrum	16.9	14.9	14.8	15.5	16.1-17.4	15.0-17.7
6.	Greatest breadth of prema- xillae	25.1	26.0	22.6	25.4	23.4-26.2	23.7-25.0
7.	Distance from tip of rostrum to anterior margin of superior nares	62.4	63.2	59.2	61.3	60,7-63,2	56.9-62.6
8.	Breadth across orbits	58.3	57.4	56.1	56.4?	56.5-60.7	53.7-58.6
9.	Breadth across posterior margins of temporal fos- sae	42.3	49.4	40.3	42.3	38.4-44.0	40.3-42.7
10.	Length of temporal fossa	25.4	24.0	24.2	24.7	24.0-27.9	22.0-27.1
11.	Depth of temporal fossa		91 1	17.4	_	17.2-19.2	16.9-19.4
	1	λ . ^{20.2}	21,1	19.8	21.0	18.3 - 22.3	17.6-23.7
12.	Length of maxillary tooth	L. 25 6	26.2	30.7	31.7	29.5- <mark>31.8</mark>	27.6-32.0
	row	R. 55.0	50.5	31.4	31.7	29.5 - 32.1	26.1-33.3
13.	Length of mandibular ra-	L. 70.8	80.0	73.7	78.3?	72.2-79.4	75.8-79.2
	mus I	R. ^{79.0}	00.0			72.2-79.9	76.3-79.5
14.	Length of mandibular sym- physis	8.3	9.7	7.8	9.0	8.9-10.0	8.7-10.1
15.	Length of mandibular tooth l	L. 97 9	20 0	36.4	36.3	33.9-37.0	31.5-37.5
	row	۲. ۲. ۵	30.0	36.9	36.3	35.0-37.6	33.1-38.4
16.	Depth between angle and l	L. 91 8	20 Q	21.3		22.0-22.8	20.8-23.8
	coronoid process I	$R^{21.0}$	20.3	21.3		22.6-23.6	20.8-24.1
17.	Number of alveoli	11 11	11 12	11 10	10 10	10-11 9-10	10-11 8-10
		11 - 10	12 ± 13	13 13	13 13	12 + 12 - 13	11 - 13 + 11 - 13

The length/breadth ratios of skull and rostrum of the Futo specimens fall between 1.50 and 1.78 and between 1.42 and 1.73 respectively, which, as mentioned by Nishiwaki (1963), shows, in conjunction with the number of teeth, that the genus *Feresa* comes within the range of Globicephalidae advocated by Nishiwaki (1963) and is especially akin to the genus *Pseudorca*.

OSTEOLOGICAL NOTES

The vertebral formulae and the number of the vertebrae, ribs and chevron bones are shown in Table 4. The uncinate transverse process on 7th dorsal vertebra pointed out by Yamada (1954) exist on the Futo specimens (Fig. 7). Distance be-

TABLE 4. N	UMBE:	R OF VERTEBRA	AE, RIBS AN	D CHEVRO	N BONES O	F FUTO SP	ECIMENS
Specimen 1	No.		1	2	3	5	6
Number of vert	tebrae	C. (fused)	7 (1-3)	7 (1-3)	7 (1-4)	7 (1-3)	7 (1-6)
		D.	12	12	12	13	13
		L.	17	17	16	16	15
		Ca	34	32	34	33	34
		Sum	70	68	69	69	69
Number of ribs		L. (two headed)	12 (6)	12(6)	12 (5)	12(7*)	12(6)
		R.(.,)	12 (6)	12 (6)	12 (5)	12 (6)	12 (6)
Number of ster	nal ribs	L.	8	8	8	8	8
		R.	9	8	8	8	8
Number of cerv	ical ribs	L.	1			_	
		R.	_	_	_		_
Number of che	vron		25	26	26	25	25
bones							
Centrum of ver	tebra a	nkylosed with (Completed (Completed C	Completed	Completed	Completed
epiphyses						-	Â
7	8	9	10	11	12	13	14
7(1-3)	7 (1	-3) 7 (1-3, 4-	-5) 7	7 (1-3)	7 (1-3)	7 (1-4)	7 (1-3)
12	12	13	13	13	12	13	12
16	16	16	16	15	17	16	16
31+	34	33	33	34 + (1)	33	34	32 + (1)
66 +	69	69	69	69 + (1)	69	70	67 + (1)
12 (5)	12 (6	*) 13 (6*)		12 (6)	12 (5)	12 (6)	12(5)
12(5)	12 (6	$12(6^*)$	13 (6)	12 (7*)	12 (5)	12 (7*)	12(5)
9	8	8		9	8	9	5+
9	8	8	9	9	8	9	5+
_	_	<u> </u>					1
_	_			_		_	
21	26	27		22	22	27	23
Completed	Comple	ted C 1-7		Completed	C 1-D 2	C 1–5	C 1–5
1	· ·			CEAN RES	Ca 12–33	Ca 25–34	Ca 24–32
* Head of	f the las	t two headed rib	is separated	from the rib.			
ficad of	140		sopuration				
	TABI	E 5 PHALANG	EAL FORM	ULAE OF F	UTO SPECI	MENS	

				JL U	· -					J1(1)	гоц		J 1		0.0.	. 1.0.		110				
Specimen		1		2		3		5		7		8		9	1	0	1	1	1	2	1	4
No.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.
Ι	3	3	3	3	3	3	2	2	2	2	2	2	3	3		3	2	2	2	2	2	2
II	8	8	9	9	9	9	10	10	8	8	8	8	9	9		9	8	8	8	8	9	8
III	7	7	8	8	8	8	8	8	7	7	7	7	7	7		8	7	7	7	7	7	7
IV	4	4	4	4	5	5	4	4	4	4	4	5	3	4		5	4	4	4	4	4	4
V	2	3	2	3	3	3		2	2	2	2	2	2	2		2	2	2	2	2	2	2

Fig. 7. Cranial views of dorsal vertebrae, showing the uncinate transverse process on the 7th, left to right: 6th, 7th and 8th. (specimen No. 12).

Fig. 8. Xray photograph of left (left) and right (right) flippers. (specimen No. 11).

Spe] Ve	cimen No. rtebra	_			6			_					8			_					12			_
1	No.	Α	В	C	D	Ε	\mathbf{F}	G		А	В	С	D	E	\mathbf{F}	\mathbf{G}		Α	В	\mathbf{C}	D	\mathbf{E}	F	\mathbf{G}
С	1 2 3 4 5	42 ¹⁾	94	136					} :	21 ²⁾ 6 5			87 64 61	140 52 48	25	44	}	25 ²⁾ 6 6 6			99 — 69 70	140 105 66 53 50	28	43
	6)				65	48				6			60	54				9			73	52		
	7	8	33	41	70	76	30	37		9	30	46	60	80	28	40		10	33	45	72	79	26	33
л	1	19	81	49	71	109	29	40	·	19	29	39	62	107	29	44		14	31	40	94	106	31	38
D	1 9	10	51	-12	02	116	45	10		16	20	55	68	109	20			20	51	10	96	116	01	00
	3	23			92	119				99			74	112				25			96	118		
	4	23			111	120				26			87	113				28			98	116		
	5	20			117	110			-	20			89, 89	116				20			100	118		
	6	29			117	121			ę	20			97	118				31	28	33	105	122	35	38
	7	20	20	29	127	121	49	20	, (21	30	29	102	123	38	37		32	20	33	108	126	35	38
	8	32	23	54	120	121	72	55	4	32	50	54	102	123	50	57		34	25	00	113	120	55	50
	Q	22			120	125				32			107	120				35			117	140		
	10	22			122	14.9			ç	22			105	147				35			120	157		
	10	24			120	178			ç	32			105	182				35			120	182		
	10	22			192	900				20			02	102				33			120	102		
	12	33 00			145	200				52			93	101				55			125	194		
	15	32			140	219			-	_		_	-	7	_	_			_			_		
L	1	32	33	36	153	216	31	21	5	31	32	36	117	183	27	19		33	32	35	135	196	30	21
	2	30			158	214			5	31			130	183				33			141	197		
	3	30			164	221			9	30			137	185				32			147	198		
	4	29			168	218			2	29			144	191				32			149	198		
	5	29			171	215			2	28			149	186				32			153	199		
	6	28			175	210			4	28			148	188				30			155	198 ⁴⁾		
	7	27	35	39	173	205	34	17	4	28			153	182				30	34	38	155	1964)	32	15
	8	27			175	203			2	27	35	38	156	179	28	14		30			156	188		
	9	27			173	195			4	27			157	175				29			154	188		
	10	28			173	190			5	26			157	173				29			154	185		
	11	27			170	184				26			157	166				28			151	183		
	12	28			168	180				26			155	157				28			151	176		
	13	27			164	177			2	26			148	149				30			149	170		
	14	27			159	173			4	26			147	145				30			147	164		
	15	28			146	171			5	26			145	141				30			145	160		
	16				_		_		2	27			137	135				31			139	154+		
	17	_							_									31	40	41	129	150	15	9
Ca	1	28	41	41	149	167	26	11	4	27	41	41	136	131	16	10		31	41	42	131	148	23	8
	2	28			144	161				27			131	129				29			127	143		
	3	27			136	159			4	26			125	126				29			122	136		
	4	27			130	150			2	26			123	123				29			115	131		

TABLE 6. DIMENSIONS OF VERTEBRAE (mm)

FERESA ATTENUATA CAPTURED

Spe I	cimen No,				6							8							12			
Vei	ntebra No.	Â	В	С	D	E	\mathbf{F}	G	Ā	В	С	D	Е	F	Ĝ	Â	В	С	D	E	F	G
Ca	5	27			128	141+			27			120	122			28			112	129		
	6	27			122	1444)			26			117	115			28			108	123		
	7	26			116	1364)			25			114	110			29			104	113		
	8	26			112	1284)			25			110	107			28			100	107		
	9	26			108	1204)			26			106	100			30			96	103		
	10	26			101	113			26			102	95			30			91	98		
	11	27	41	44	99	105	9	5	26	41	42	98	86	15	5	32	41	40	88	90	10	4
	12	27			92	96			26			94	88			31			86	83		
	13	28			91	83			27			91	72			31			78	74		
	14	29			83	61			28			92	72			32			78	66		
	15	29			85	71+			29			86	65			32			77	58		
	16	31			79	56			30			84	60			33			71	52		
	17	31			75	51			31			79	53			33			70	47		
	18	32			73	48			32			74	49			33			67	42		
	19	31			66	43			32			71	44			34			64	38		
	20	32			60	39			33	41	38	62	36	4	4	34	41	33	59	35	I	1
	21	32			60	37			34			57	34			33			52	33		
	22	32	43	36	55	34	1	2	33			52	32			28			45	31		
	23	30			51	32			31			45	32			21			39	34		
	24	26			40	32			27			38	35			16			30	35		
	25	19			34	35			20			32	38			14			24	36		
	26	16			28	34			16			25	38			12			20	35		
	27	14			22	32			15			21	38			12			18	33		
	28	12			20	32			14			18	34			11			18	30		
	29	12			19	30			12			18	29			10			14	27		
	30	11			17	27			10			11	27			9			12	23		
	31	10			14	22			8			13	23			8			8	19		
	32	9			11	19			7			10	19			7			7	14		
	33	10			8	16			143)			7	14									—
	34	11			6	12			5			5	11									_

Table 6. Dimensions of vertebrae (continued)

A =Length of body at center

- B =Height of body at front end
- C = Breadth of body at front end
- D = Total height from anterior bottom
- E = Bilateral breadth of transverse processes
- F =Greatest height of neural canal
- G = Greatest breadth of neural canal
- 1): Six are united.
- 2): Three are united.
- 3): Two are united.
- 4): doubled the left half

Specimen No.					6							8					12	
			Len	gth	_~_	Dia	meter		Î	Leng	th	_~	Diame	eter		Dia	amet	er
No. of t	eeth		L.	R.		L.	R.		\mathbf{L}	•	R.		L.	R.		L.]	R.
Maxillaly teeth	1 2 3 4 5 6 7 8 9 10		19 20 21 21 20 19 19 17 15 10	18 21 22 21 21 20 19 17 16		5 6 7 7 7 7 6 6 4	5 6 7 7 6 5		$ \begin{array}{r} 17 \\ 20 \\ 18 \\ 19 \\ 19 \\ 17 \\ 17 \\ 16 \\ 16 \\ 14 \\ 14 \\ \end{array} $		7 16 15 19 $+$ 19 18 18 16 15		7 6 8 7 6 8 7 7 7 6	3 5 6 7 7 7 6		7 7 8 8 8 7 7 7 6		6 7 8 8 8 8 7 7 7
Mandibular teeth	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 13 \\ \end{array} $		16 19 21 22 22 24 23 23 21 22 20 8	16 19 21 23 23 23 23 23 22 19 21 18 16		7 7 8 8 8 8 7 7 7 6 4	6 7 7 7 8 7 7 8 7 7 8 7 6 6 6 5		20 20 21 21 21 21 21 21 21 22 19 22 19 23)) 	+ + 19 20 22 22 22 21 21 20 -		7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 2	6 7 8 8 8 8 8 8 8 8 7 		$ \begin{array}{c} 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 5 \\ 4 \\ 4 \\ 4 \\ $	-	
Specimen No	TABI	LE 8.	. DI	IME: 6	NSIC	DNS	OF R	IBS (OF 1	FUT B	O S	PECI	IMEN	S (mr	n) 1	2		
spooning in		<u>^</u>		 p		ŕ		<u>^</u>				à		<u>_</u>		~ P		à
No. of ribs	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.	L.	R.
Vertebral ribs	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172 320 379 412 420 418 384 382 376 351 332 283 136	$25 \\ 16 \\ 12 \\ 10 \\ 11 \\ 11 \\ 11 \\ 9 \\ 8 \\ 8 \\ 8 \\ 6 \\ -$	$24 \\ 16 \\ 12 \\ 10 \\ 11 \\ 11 \\ 11 \\ 10 \\ 8 \\ 8 \\ 8 \\ 7 \\ 5$	21 25 28 28 25 26 28 ¹⁾ — — — —	22 24 29 29 26 26 27 ¹⁾ 	170 297 350 382 397 380 360 Ca374 ⁸ 358 326 290 241	170 298 348 383 408 405 377 365 350 338 292 237	$\begin{array}{c} 22 \\ 16 \\ 13 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11 \\ 10 \\ 9 \\ 9 \\ 7 \\ - \end{array}$	$25 \\ 26 \\ 14 \\ 12 \\ 12 \\ 11 \\ 10 \\ 10 \\ 9 \\ 9 \\ 7 \\ -$	19 20 26 25 25 ²⁵ 	20 20 25 27 26 24 	189 326 390 420 427 398 390 380 354 327 298 231	192 324 393 413 427 392 380 372 348 323 294 223 —	21 18 17 9 8 8 8 7 7 6 5	22 19 12 9 9 9 9 9 9 8 8 7 6 4	20 23 24 27 26 29 ¹ 	20 21 29 29 25 29 ¹⁰ — — — — — — —
Sternal ribs	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96 103 110 116 128 139 156 118	17 17 11 9 7 5 7 6	$12 \\ 12 \\ 10 \\ 9 \\ 6 \\ 6 \\ 7 \\ 6$			95 98 118 117 133 142 141 120	96 97 112 117 129 136 143 103	16 12 9 10 8 7 6 5	16 12 9 7 7 6 5			98 97 107 106 123 138 124 95	94 96 108 116 124 132 128 84	$ \begin{array}{r} 16 \\ 9 \\ 7 \\ 7 \\ 5 \\ 6 \\ 4 \end{array} $	$ \begin{array}{r} 18 \\ 9 \\ 8 \\ 7 \\ 5 \\ 4 \\ 6 \\ 4 \end{array} $		

TABLE 7. DIMENSIONS OF TEETH OF FUTO SPECIMENS (mm)

A : Length along visceral border

B : Breadth at middle

C : Distance between two heads

1) Length of the process on uncinate transverse process

2) Head is separated from the rib

3) Broken

FERESA ATTENUATA CAPTURED

TABLE 9. DIMENSIONS OF SCUPULAE OF FUTO SPECIMENS (mm)

Specimen No.			6		8	1	12
		L.	R.	L.	R.	L.	R.
	Α			142	143	147	148
\mathbf{i}	в	165	165	143	142	152	150
- \ .	С			123	127	120	122
	D	-	_	225	229	210	210
1	D'	227	232	_	_	258	251
	Е	37	35	35	35	35	35
	E'	28	28	28	29	29	29
	F	42	43	40	42	45	40
	G	34	37	25	32	36	37
/	н	45	43	50	47	45	58
	I	60	57	-48	48	41	46
	J	57	56	57	46	34	31

D': Length along vertebral border

E': Breadth of grenoid cavity

	TABLE 10.	DIMENSIONS FUTO SPECIMI	OF STE ENS (mn	ERNUMS OF	
		Specimen No.	6	81)	12
		А	47	36	38
		В	80	75	84
ſ		С	97	88	89
1.	ŧ (L D	60	58	57
5		EL.	47	32	35
		R.	47	30	36
4	5-1-2	F	92	93	93
	5 67	G	48	43	43
		TE CH CETA	48	RESE 38 CH	40
		I	57	67	61
		J	37	32	31
		К	45	32	26
		L	35	20	7
	←L→	М	60	48	45
		Total length	<u> </u>	157 (1–II)	192

 2nd and 3rd segments are separated, and their length of facets are measured 22 and 24 respectively.

10.0)		
	Specimen No.	6	8	12
G	А	103	86	101
- D	В	136	113	131
$\langle \pm \rangle$	С	30	28	33
	D	15	12	18
	E	69	63	65
	Å F	46	36	37
F-F-	G	54	55	50
	\ нL.	25	27	25
	R .	26	27	25
	IL.	80	64	75
	R.	78	67	70
Stylohyals straig	ht length L.	41	82	98
	R.	90	83	100
" breadth a	t middle L.	13	15	15
	R.	14	15	16

TABLE 11. DIMENSIONS OF HYOID BONES OF FUTO SPECIMENS (mm)

 TABLE 12. DIMENSIONS OF CHEVRON BONES OF FUTO SPECIMENS

 Supplying No.
 6

 9
 12

Spec	imen No.	0		8		12	
No.	of chevron	Ā	B	Ā	B	Ā	B
	1	L. 22		L. 19		L. 30	
		R. 24 ¹⁾		R. 18			
	2	L. 18		L. 24^{2}		29	18
		R. 28 ¹⁾		R. 23			
	3	27	20	L. 26^{2} B 25		31	19
	4	97	21	25	21	39	20
	5	36	22	27	22	45	20
	6	49	24	34	23	48	21
	7	52	23	40	20	49	21
	8	54	23	41	24	47	21
	ğ	54	23	30	23	46	20
	10	53	23	39	23	46	20
	11	50	23	45	25	43	21
	12	49	24	45	26	43	21
	13	47	25	45	27	41	21
	14 00 0	45	25		27	37	21
	15	41	25	40	26	30+	21
	16	- 39	25	37	26	35	21
	17	37	24	34	26	30	21
	18	34	23	32	25	27	21
	19	32	23	30	25	25	20
	20	28	22	27	24	19	18
	21	24	20	23	22	14	16
	22	18	18	19	19	12	16
	23	11	16	15	19	R. 7	
	24	10	13	12	18	—	—
	25	L. 7	-	L. 9			
		R. 7		R. 9		_	
	26		—	L. 5	_	—	
				R. 4	<u> </u>		_

A: Total height, B: Maximum breadth across the laminae 1), 2) fused together tween the tips of the processes of specimen Nos. 6, 8 and 12 are 54 (D 7),77 (D 7) and 57 mm (D 6) respectivery.

Table 5 and Fig. 8 show the pharangeal formulae and the X ray photograph of the flippers.

The dimensions of skeleton except skull are shown in Tables 6-13.

TABLE 13.	DIMENSION	S OF E	PELVIC BONES	OF
Specimen No	FUIO SPEG	lengt	Breadth at	middle
opeennen 140.	L.	R.	L.	R.
6	105	105	12	12
8	118	115	14	10
12	122	121	11	11

ACKNOWLEDGEMENT

We are much indebted to Prof. Teizo Ogawa of the Fuculty of Medical Science, University of Tokyo, and the staffs of the Whales Research Institute, they kindly discussed with us on the taxonomical problems and gave us valuable advices. The staffs of the Ito Aquarium and the Enoshima Marineland helped us in collecting the biological data, and Prof. Munesato Yamada of the Fuculty of Medical Science, Kanazawa University, kindly sent the literatures on the subject. We also owe to the Futo Fisheries Co-operative Union which kindly informed us the catch of the rare porpoise. Our greater thanks are due to them.

REFERENCES

CADENAT, J. (1958). Notes sur les delphinidés Ouest-Africains. II-Un specimen du genre Feresa capturé sur les cotes du Sénégal. Extrait. Bull. Inst. Francais L'afrique Noire. XX, A, 4; 1486–91.

HALL, E. R. & KELSON K. R. (1959). The mammals of north America. II: 1-830.

NISHIWAKI, M. (1963). Taxonomical consideration on genera of delphinidae. Sci. Rep. Whales Res. Inst., 17: 93-103.

---- (1964). Revision of the article "Taxonomical consideration on genera of *Delphinidae*" in No. 17. Sci. Rep. Whales. Res. Inst., 18: 171-172

YAMADA, M. (1954). An account of a rare Porpoise, Feresa Gray from Japan. Sci. Rep. Whales Res. Inst., 9: 59-88.

> 一般財団法人 日本鯨類研究所 THE INSTITUTE OF CETACEAN RESEARCH

APPENDIX I EXTERNAL MEASURMENTS

I	Point of measurment	Specimen No. Sex	l M	:	2 M		3 M	[8 M	
	· .1 1	C) 940	m	100%	cm	%	Cm	100%	cm	100%
1. 2.	Length, total Length, tip of upper jaw t center of eye	240 o 21	, .0	8.7	217 22.0	100.0	215 24.5	11.4	229	8.7
3.	Length of gape	13	0.1	5.4	13.0	6.0	12.0	5.6	14.5	6.3
4.	Center of eye to externa auditory meatus (direct)	l L. 9	9.5	4.0	R. 7.5	3.5	L. 7.0	3.3	L. 7.0	3.1
5.	Length, center of eye to angl of gape	e L. 8	8.0	3.3	9.0	4.1	12.5	5.8	5.5	2.4
6.	Length, tip of upper jaw t blowhole	o 16	5.0	6.7	21.0	9.7	25,5	11.9	22.0	9.6
7.	Anteriormost point of gap to blowhole along the melo	e 40 n	0.0	16.7	37.5	17.3	39.0	18.1	39.0	17.0
8.	Length, tip of upper jaw t anterior insertion of flipper	o L. 41 R	.5	17.3			46.5	21.6	38.5	16.8
9.	Length, anterior insertion of flipper to axilla	of L. – R. –			_		14.5	6.7 —	15.0	6.6 —
10.	Length, tip of upper jaw t tip of dorsal fin	- 0		—	134.0	61.8	131.0	60.9	125.5	54.8
11.	Length, tip of upper jaw t midpoint of umbilicus	o 10 0	0.0	41.7	93.0	42.9	83.0	38.6	100.5	43.9
12.	Length, tip of upper jaw t midpoint of genifal aperture	o 131	.0	54.6	122.0	56.2	113.5	52.8	124.5	54.4
13.	Length, tip of upper jaw t center of anus	o 158	3.0	65.8	145.0	66.8	135.5	63.0	149.5	65.3
14.	Projection of upper jaw be yond the lower	- 6	5.0	2.5	4.0	1.8	2.0	0.9	3.7	1.6
15.	Girth, at anterior insertion of flipper	f 119	0.0	49.6	/-				109.0	47.6
16.	Girth, at anterior insertion of dorsal fin (maximum)	f 143	3.0	59.6			139.0	64.7	143.0	62.4
17.	Maximum height of body including dorsal fin	r, 76	5.0	31.7			68.0	31.6	70.0	30.6
18.	Length of eye	3	6.0	1.2	2.5	1.2	3.0	1.4	2.4	1.0
19.	Width of blowhole	-			4.0	1.8	3.0	1.4	4.8	2.1
20.	Length of flipper, anterio	r L. 48	3.0	20.0			47.5	22.1	43.5	19.0
~ 1	insertion to tip	R. 49	0.0	20.4	43.0	19.8			42.0	18.3
21.	Length of hipper, along an	- L. 33 R 59	.5	22.3	47 0	21.7	50.5	23.5	40.5	20.3
22	Length of flipper avilla to ti	\sim 1.36	: 0	15.0	17.0	21.7	35.0	16.3	32.0	14 0
42.	Length of mpper, axina to th	R. 37	1.0	15.4	33.5	15.4			31.5	13.8
23.	Width of flipper, maximum	L. 15	5.5	6.5			15.0	7.0	14.5	6.3
	•• *	R. 15	5.5	6.5	15.0	6.9	—		14.0	6.1
24.	Dorsal fin, height	24	0, I	10.0	22.0	10.1	25.0	11.6	22.5	9.8
25.	Dorsal fin, length of base	40	0.0	16.7	42.0	19.4	39.0	18.1	32.0	14.0
26.	Dorsal fin, anterior insertion	민조스 1	-	44	(決良中下)	747	46.0	21.4	40.0	17.5
	to tip along anterior edge									
27.	Dorsal fin, posterior insertion to tip along posterior edge	n –		_	_		29.5	13.7	26.5	11.6
28.	Dorsal fin, anterior insertion to posterior edge (minimum	n –)	_	-	_		33.0	15.3	30.0	13.1
29.	Width of tail flukes, tip to ti	p _ 59	0.0	24.6	61.0	28.I	54.5	25.3	62.5	27.3
30.	Anterior insertion of tail fluk	e L. 18	3.0	7.5	18.0	8.3	15.5	7.2	17 0	74
31	Anterior insertion of tail fluk	e I. 36	, U 1 0	15.0	37 5	0.3 17 9	25 F	16 5	20 F	16.0
	to tip	R. 36	5.0	15.0	37.5	17.3				
32.	Distance, tip of tail fluke t notch	o L. 30 R. 30).0).5	$\substack{12.5\\12.7}$	$\begin{array}{c} 31.0\\ 31.5\end{array}$	14.3 14.5	28.5 	13.3	32.5	14.2

1) fetus of No. 11 2) fetus of No. 12

82

9 M		10 M		14 M	14 M			5 F		6 F		
cm 223 21.0	% 100.0 9.4	cm 244 22.5	% 100.0 9.4	cm 214 22.5	$\begin{array}{r} \%\\100.0\\10.5\end{array}$	cm 215 21.0	% 100.0 9.8	cm 225 22.0	% 100.0 9.8	cm 225 22,5	% 100.0 10.0	
15.0 6.7	$6.7 \\ 3.0$	15.0 L. 7.7	$\begin{array}{c} 6.1 \\ 3.2 \end{array}$	15.5 7.0	7.2 3.3	14.5 R. 7.0	$6.7 \\ 3.3$	13.5 R. 8.5	$6.0 \\ 3.8$	16.0 L. 7.5	$7.1 \\ 3.3$	
6.0	2.7	8.0	3.3	7.0	3.3	6.5	3.0	8.5	3.8	6.5	2.9	
23.5	10.5	24.5	10.0	23.0	10.7	18.5	8.6	20.0	8.8	23.5	10.4	
38,0	17.0	39.0	16.0	32.5	15.2	36.0	16.7	38.0	16.9	38.5	17.1	
46.0	20.6	46.0	18.9	$\begin{array}{c} 40.0\\ 41.0\end{array}$	$18.7 \\ 19.2$	44.0	20.5	48.0	21.3	44.0	19.6	
15.0	6.7	16.0	6.6	13.5	6.3	10.0	<u> </u>	15.0	6.7	9.0	4.0	
131.0	58.7	138.0	56.6	122.0	57.0	128.5	4.7 59.8	130.0	57.8	125.0	55.6	
100.5	45.1	96.5	39.5	94.0	43.9	90.0	41.9	101.0	44.9	100.0	44.4	
114.5	51.3	127.0	52.0	117.0	54.7	126.0	58.6	130.0	57.8	133.5	59.3	
140.0	62.8	156.0	63.9	139.0	65.0	132.0	61.4	148.0	65.8	145.5	64.7	
3.0	1.3	3.0	1.2	5.0	2.3	3.0	1.4	3.5	1.6	3.5	1.6	
108.0	48.4	111.0	45.5	105.0	49.1	109.5	50.9	110.0	48.9	102.5	45.6	
132.0	59.2	141.0	57.8	112.5	52.6	130.0	60.5	135.0	60.0	136.5	60.7	
66.0	29.6	73.0	29.9	54.0	25.2	65.0	30.2	64.0	28.4	70.5	31.3	
3.0	1.3	2.5	1.0	3.0	1.4	2.0	0.9	2.5	1.1	2.0	0.9	
3.5	1.6	4.0	1.6	3.5	1.6	3.5	1.6	3.0	1.3	3.5	1.6	
47.0	21.1	50.0	20.5	$40.0 \\ 41.0$	18.7	40.0	18.6	50.0	22.2	44.5	19.8	
53.5	24.0	54.0	22.1	43.5	20.3	44.0	20.5	55.0	24.4	48.5	21.6	
36.5	16.4	38.0	15.6	$31.0 \\ 30.5$	$14.5 \\ 14.3$	32.0	14.9	37.0	16.4	33.0	14.7	
14.0	6.3	15.0	6.1	$\begin{array}{c} 13.0\\ 13.0\end{array}$	$\begin{array}{c} 6.1 \\ 6.1 \end{array}$	12.5	5.8	15.0	6.7	13.0	5.8 	
21.0	9.4	26.0	10.7	23.0	10.7	22.0	10.2	24.5	10.9	23.0	10.2	
32.0	14.3	38.0	15.6	34.0	15.9	34.0	15.8	38.0	16.9	43.0	19.1	
42.5	19.1	47.5	19.5	37.5	17.5	40.0	18.6	48.0	21.3	46.0	20.4	
28.0	12.6	27.5	11.3	24.5	11.4	24.0	11.2	21.0	9.3	30.0	13.3	
28.0	12.6	34.0	13.9	27.5	12.9	32.5	15.1	33.0	14.7	34.0	15,1	
56.0	25.1	58.0	23.8	53.0	24.8	49.5	23.0	64.0	28.4	60.5	26.9	
17.0	7.6	16.5	6.8	15.0	7.0	15.0	7.0	16 5	<u> </u>	10.0		
		42.0	17 2	15.0 34 0	7.0 15.9	15.0	7.U —	15.5	0.9	19.0	0.4	
40.5	18.2			34.5	16.1	38.0	17.7	41.0	18.2	32.0	14.2	
30.5	13.7	34.0	13.9	23.5 23.0	$\begin{array}{c} 11.0 \\ 10.7 \end{array}$	30.0	14.0	34.0	15.1	31.5	14.0	

7 F			11 F		12 F		13 F		15 F	1)	16 F	2)
1. 2.	cm 221 18.0	% 100.0 8.1	cm 227 24.5	% 100.0 10.8	cm 221 22.5	% 100.0 10.2	cm 208 21.5	% 100.0 10.3	cm 20.5 2.4	% 100.0 11.7	cm 53.0 7.2	% 100.0 13.6
3. 4. 1	15.0 L. 7.0	$\begin{array}{c} 6.8\\ 3.2 \end{array}$	17.0 L. 7.5	7.5 3.3	18.5 8.0	8.4 3.6	13.5 R. 7.0	$\begin{array}{c} 6.5 \\ 3.4 \end{array}$	1.6 L. 1.2	7.8 5.9	5.5 L. 2.5	10.4 4.7
5.	L. 3.0	1.4	L. 7.5	3.3	4.0	1.8	R. 8.0	3.8	L. 0.8	3.9	L. 1.5	2.8
6.	20.0	9.0	23.0	10.1	24.5	11.1	15.0	7.2	1.9	9.3	6.9	13.0
7.	36.0	16.3	38.0	16.7	37.5	17.0	34.0	16.3	3.4	16.6	10.0	18.9
8,	41.0	18.6	46.0	20.3	44.5	20.1	41.3	19.9	5.1	24.9 —	13.2	24.9
9.	15.0	6.8	14.5	6.4	15.5	7.0	18 5	6.5	1.4	6.8	4.2	7.9
10.	120.0	54.3	137.0	60.0	134.0	60.6	120.0	57.7	11.6	56.6	33.9	64.0
11.	98.5	44.6	96.0	42.3	89.0	40.3	91.0	43.7	10.7	52.2	27.6	52.1
12.	135.0	61.1	134.0	59.0	132.0	59.7	127.0	61.1	13.5	65.9	35.0	66.0
13.	142.0	64.3	142.0	62.6	140.0	63.3	133.0	63.9	14.1	68.8	36.6	69.1
14.	4.0	1.8	4.0	1.8	2.0	0.9	4.0	1.9	0.4	2.0	0.2	0.4
15.	119.0	53.8	105.5	46.5	112.0	50.7	101.0	48.6	13.8	67.3	28.5	53.8
16.	140.0	63 • 3	134.0	59.0	140.0	63.3	117.0	56.2	14.3	69.8	29.8	56.2
17.	71.5	32.4	65.0	28.6	64.0	29.0	56.5	27.2	5.7	27.8	11.5	21.7
18.	2.5	1.1	2.5	1.1	2.5	1.1	2.8	1.3	0.4	2.0	0.8	15.1
19.	4.0	1.8	3.5	1.5	5.0	2.3	3.5	1.7	0.9	4.4	1.1	2.8
20.	32.5	14.7	45.0	19.8	46.0	20.8	41.0	19.7	3.6	17.6	10.8	20.4
21.	10.5		49.5	21.8	50.5	22.9			3.9	19.0	12.5	23.6
22.	49.5	22.4	34.0	15.0			45.0	21.6	2.4	11 7	— 75	 14_2
	42.0	19.0			34.5	15.6	32.5	15.6		_		
23.	15.0	6.8	15.0	6.6	14.5	6.6	14 7	7.0	1.2	5.9	3.3	6.2
24.	22.3	10.1	22.5	9,9	22.5	10.2	20.0	9.6	1.0	4.9	3.6	6.8
25.	35.0	15.8	41.0	18.1	40.0	18.1	33.0	15.9	2.8	13.7	7.7	14.5
26.	41.5	18.8	47.0	20.7	43.0	19.5	38.0	18.3	2.3	11.2	9.1	17.2
27.	25.5	11.5	24.5	10.8	22.0	10.0	23.0	Shi.i	CH 1.0	4.9	5.0	9.4
28.	31.0	14.0	33.0	14.5	36.0	16.3	29.0	13.9	2.3	11.2	6.5	12.3
29.	60.0	27.1	61.0	26.9	54.5	24.7	51.0	24.5	4.2	20.5	10.3	19.4
30.	10 F		16.5	7.3	16.0	7.2	17.0		1.9	9.3	4.0	7.5
31.	19.0	0.0 	38.5	17.0			17.0	8.2 —	3.0	14 6		 15_8
	39.5	17.9			37.0	16.7	33.0	15.9				10.0
32.	31.0	14.0	32.5	14.3	31.0	14.0	26.5	12.7	2.2	10.7	6.2	11.7

FERESA ATTENUATA CARTURED

ICR

一般財団法人 日本鯨類研究所 THE INSTITUTE OF CETACEAN RESEARCH

.

.

APPENDIX II SKULL MEASURMENTS (mm)

	S	pecimen	1		2		3		8		9	I
	Point of measurment	No. Sex	Ň	r	м	r	м		v	r	м	r
	Le	Body ngth(cm)	24	0	21	7	213	ō	22	9	22	3
1	Total (condula basel) length		200	100%	250	100 %	279	%	356	100 %	270	100 0
1. 9	Length of rostrum (median)		170	44 7	166	46.2	168	45.9	168	47.9	186	49.2
2.	Preadth of rostrum at base		190	TT./	001	40.2 97 7	110	TJ.2 21 7	110	20.0	110	19.4 20 6
э. Л	Breadth of rostrum at middle		120 Q4	94 7	99 00	27.7	03	25 O	88	30.9 94.7	01	29.0
ч. Б	Breadth of promovillog at mid		54	27.7	50	16 9	95 64	23.0	50 50	16.9	61	16 1
э.	dle of postrum		00	17.4	50	10.2	04	17.2	00	10.5	01	10.1
6	Greatest breadth of premavil-		80	23 4	04	26.2	Q1	94 5	Q1	25.6	QA	22 B
0.	lae		05	23.1	31	20.2	51	41.5	51	23.0	50	25.0
7	Minimum breadth of premay.		58	15 3	50	13.0	56	15 1	55	15 4	53	14 0
1.	illae near the base of rostrum		50	10.0	50	15 5	50	13.1	55	10.1	55	11.0
8	Length of premaxilla	I.	277-	+ 72 9+	263	70 5	273	73 4	257	72.2	291	77 0
0.	Length of premaxina	R	204	77 4	203	78.8	290	78.0	282	79.2	312	82.5
a	Breadth of superior pares		55	14 5	50	13.9	48	12 9	46	12.9	48	12.3
10	Distance from tip of rostrum	T.	186	48 9	175	48 7	184	49 5	175	49.2	192	50.8
10.	to bottom of maxillary notch	R D.	186	48 9	175	48 7	183+	49 2+	176	49 4	195	51.6
11	Distance from tip of rostrum		41	10.9	28	7.8	31	83	45	12.1	40	10.6
	to anterior end of yomer		11	10.0	20	7.0	51	0.5	10	12.0	10	10.0
19	Distance from tip of rostrum		236	62 1	223	62 1	233	62.6	216	60.7	239	63 2
12.	to anterior margin of superior		200	02.1	220	02,1	200	02.0	~10	00.7	200	03.2
	nares											
18	Distance from tip of rostrum		182	47 9	172	47 9	171	46.0	163	45.8	187	49 5
13.	to posterior median end or	f	102	17.5	172	17.5	171	10.0	100	10.0	107	15.5
	maxillae on palate											
11	Distance from tip of rostrum		288	75.8	268	74 7	970	75.0	268	75 8	282	74.6
14.	to posterior and of yomer on		200	75.0	200	/4./	219	75.0	200	75.5	202	74.0
	cranial base (median)											
15	Breadth across middle of orbit		215	56 6	218	60.7	919	57.0	206	57 0	221	59 5
16	Breadth across zygomatic pro	-	215	61.8	210	66.9	212	62 4	200	64.3	221	63.9
10.	Dicauti across zygomatic pro	-	233	01.0	210	00.5	232	02.1	443	01.5	233	05.2
17	Breadth across post-orbita	1	220	60 5	228	66.3	220	61.8	994	62.0	927	62 7
17.	Breatth across post-orbita	1	230	00.5	200	00.5	230	01.0	227	02.9	257	02.7
19	Height of skull including pasal	0	100	50.0	198	52 4	192	49.2	180	50.6	101	50 5
10.	Breadth agross posterior man	5	160	12.6	150	J2.4	142	20 /	155	42 5	151	40.0
19.	ging of temporal forma	団法ノ	102	14.0	150	11.0	143	30.1	155	40.0	151	10.0
20	Length of temporal form	TUTE 🖸	62	94. 9	06	96 7	100	26.0	01	25 6	00	26.2
20.	Length of temporal lossa	1). D	92	24.2	100	20.7	001	20.9	91	23.0	100	20.2
91	Dopth of temporal form	T T	. 99 67	20.1	60	47.9	99 60	20.0	60	24.2	100	20.5
21.	Depth of temporal lossa	D D	74	10.5	03	19.2 91 A	72	10.5	79	20.2	60	17.2
<u> </u>	I enoth of maxillary teeth row	. т	. 74	21.0	111	21.4	115	20.0	105	20.2	114	20.9
22.	Length of maximaly teem for	v L.	141	51.0	111	50.9	115	30.9	105	29.5	114	50.2
		R	. 115	30.3	106	29.5	117	31.5	107	30.1	113	29.9
				• •				•				
23.	Distance from first tooth to	o L	. 176	46.3	175	48.7	179	48.1	168	47.2	182	48.1
	bottom of maxillary notch	R	. 175	46.0	170	47.4	179	48.1	169	47.5	185	48.9
24.	Breadth of occipital foramer	ı	43	11.3	39	10.9	38	10.2	40	11.2	39	10.3
25	. Height of occipital foramen		39	10.3	38	10.6	36	9.8	37	10.4	41	10.8

FERESA ATTENUATA CARTURED

10	1	4	ļ	5	6	<u>3</u>	;	7	1	1]	2	1	3	
м	N	Л	1	?	F	7	F	7]	F		F]	\mathbf{F}	
244	21	14	22	25	22	25	22	21	22	27	2	21	208		
395 100 0	369	100 %	265	100 0	279	100 %	279	100 %	200	100 0	200	100 %	275	100 0	
103 48 0	175	100.0	175	47 0	190	100.0	170	100.0	101	100.0	194	47.9	192	47 6	
155 40,5	1/0	20.2	116	21.9	100	40.4 20.6	119	20.1	101	20.0	110	20.2	105	70.8	
	100	29.3	00	94 7	114	30.0	07	30.1 99.4	07	20.9	01	00.0	001	23.5	
	60	16.9	90 69	17.0	90 60	16 1	67	16 7	67	16 9	- 51 60	23.3	56	15 0	
	00	10.5	02	17.0	00	10.1	02	10.7	02	10.5	09	17.7	50	15.0	
	89	24.2	90	24.7	90	24.2	93	25.0	90	23.7	95	24.4	89	24.2	
	57	15.5	58	15.9			58	15.6	57	15.0	58	14.9	49	15.5	
	281	76.4	273	74.8	272	73.1	270	72.6	273	71.8	276	70.8	267	76.4	
	292	79.3	296	81.1	298	80.1	294	79.0	299	78.7	307	78.7	296	79.3	
	47	12.8	51	14.0	51	13.7	46	12.4	48	12.6	49	12.6	47	12.8	
	185	50.3	185	50.7	192	51.6	187	50.3	189	49.7	194	49.7	188	50.3	
	188	51.1	186	51.0	194	52.2	189	50.8	191	50.3	196	50.3	189	51.1	
	37	10.1	29	7.9	39	10.5	33	8.9	33	8.7	46	11.8	45	10.1	
	228	62.0	227	62.3	231	62 1	226	56.9	238	62.6	240	61 5	235	62.0	
	220	0210		02.0	201	02.1	110	00.0	100	0210		01.0	200	02.0	
	192	40 7	183	50 1	192	40.9	185	40.9	185	4.9.7	187	47 0	191	40 7	
	105	13.7	105	50.1	105	15.4	105	15.0	105	10.7	107	17,5	101	15,7	
	0.85		070				0.50							0	
	277	75.3	270	74.0	284	76.3	278	74.8	285	75.0	298	76.4	281	75.3	
	200	6 <i>C</i> 6	914	50 6	910	50 C	919	5 <i>C</i> 5	904	F9 7	910	== 0	100	EG 5	
	208	50.5	214	0.80	218	38.0	212	20.3	204	53.7	218	55.9	199	50.5	
	230	62.5	239	05.5	_		235	03.2	229	60.5	242	62.1	219	38.4	
	227	61.7	235	64.4	236	63.4	231	62.3	225	59,2	239	61.3	218	61.7	
	177	48.1	195	53.4			179	48.1	184	48.4	_		177	47.2	
	153	41.6	156	42.7	158	42.5	157	42.2	155	40.8	157	40.3	155	41.6	
	96	26 1	95	26.0	87	93 A	83	99 3	90	98 7	94	94 1	Q 9	96-1	
	88	20.1	00	20.0	02	25.1	82	22.5	91	23.7	91	27.1	92	20.1 94 0	
	66	17 0	60	10 6	55 63	16.0	79	10 4	66	17 A		17 0	67	17.0	
	00	17.9	74	20.2	70	10.9	00	19.7	67	17.4	70	17.9	77	17.9	
	02	22.3	106	20.5	110	10.0	00	20.1	105	17.0 97.6	190	19.0	110	22.3	
	117	31.8	106	29.0	119	32.0	(122)	30.4	105	27.0	120	30.8	119	31.8	
127 32.2	118	32.1	106	29.0	120	33.3	118	31.7	99 (109)	26.1 (28.7)	120	30.8	112	29.9	
	176	47.8	176	48.2			178	47.8	179	47.1	184	47.2	180	48.0	
	181	49.2	176	48.2		·	180	48.4	182	47.9	185	47.4	180	48.0	
	43	11.7	43	11.8	44	11.8	47	12.6	40	10.5	39	10.0	44	11.7	
	40	10.9	43	11.8	35	9.4	42	11.3	36	9.5	36	9.2	37	9.9	

26.	Breadth across occipital cond- yles		107	28.2	92	25.6	88	23.7	99	27.8	87	23.0
27.	Length of occipital condyle	L. P	65 65	17.1	56 56	15.6	50 59	13.4	57 57	16.0	55 55	14.6
28.	Length of mandibular ramus	ĸ. L.	283	74.5	280	13.6 78.0	286	76.9	275	72.2	300	79.4
		R.	285	75.0	282	78.6	288	77.4	275	72.2	302	79.9
29.	Length of symphysis		38	10.0	34	9.5	33	8.9	34	9.6	36	9.5
30.	Length of mandibular teeth	L.	129	33,9	128	35.7	129	34.7	124	34.8	140	37.0
	row	R.	133	35.0	131	36.5	134	36.0	125	35.1	142	37.6
31.	Length of mandibular hiatus	L.	112	29.5	115	32.0	123	33.1	120	33.7	136	35.8
		R.	110	28.9	115	32.0	124	33.3	118	33.1	134	35.4
32.	Depth between angle and cor-	L.	85	22.4	81	22.6	82	22.0	79	22.2	86	22.8
	onoid process	R.	87	22.9	81	22.6	85	22.8	82	23.0	89	23.6
33.	Breapth across mandibular condyles		202	53.2	215	59.9	210	56.5	203	57.0	220	58.2
34.	Length of tympanic bulla	L.	41	10.8	40	11.1	39	10.5	38	10.7	41	10.8
		R.	41	10.8	41	11.4	38	10.2	38	10.7	41	10.8
35.	Greatest breadth of tympanic	L.	26	6.8	24	6.7	24	6.5	23	6.5	24	6.3
	bulla	R.	25	6.6	24	6.7	24	6.5	23	6.5	24	6.3
36.	Number of alveoli		$\frac{11}{12}$	10 13	10 12	9	<u>10</u> 12	<u>10</u> <u>12</u>	$\frac{10}{12}$	10 12	<u>10</u> 12	9

1966

一股財団法人 日本鯨類研究

FERESA ATTENUATA CARTURED

		96	26.1	89	24.4	94	25.3	93	25.0	97	25.5	90	23.1	93	24.8
		51	13.9	55	15.1	54	14.5	56	15.1	58	15.3	58	14.9	53	14.1
		52	14.1	57	15.6	56	15.1	58	15.6	60	15.8	61	15.6	55	14.7
		285	77.4	289	79.2	285	76.6	282	75.8	289	76.1	302	77.4	287	76.5
304	77.0	285	77.4	290	79.5	286	76.9	284	76.3	290	76.3	303	77.7	288	76.8
		35	9.5	36	9.9	33	8.9	37	9.9	33	8.7	37	8.7	38	10.1
		131	35.6	137	37.5	134	36.0	138	37.1	131	34.5	123	31.5	139	37.1
146	37.0	135	36.7	135	37.0	137	36.8	135	36.3	130	34.2	129	33.1	144	38.4
		121	32.9	122	33.4	_		110	29.6	120	31.6	130	33.3	120	32.0
		121	32.9	124	34.0	<u> </u>	_	112	30.1	121	31.8	133	34.1	117	31.2
		81	22.0	87	23.8	85	22.4	82	22.0	81	21.3	86	22.1	78	20.8
		82	22.3	88	24.1	88	23.7	82	22.0	83	21.8	86	22.1	78	20.8
		203	55.2	218	59.7	202	54.3	208	55.9	208	54.7	196	50.3	209	55.7
		40	10.9	40	11.0	41	11.1	38	10.2	40	10.5	42	10.8	39	10.4
		39	10.6	40	11.0	40	10.8	38	10.2	40	10.5	42	10.8	39	10.4
		24	6.5	23	6.3	23	6.2	23	6.3	24	6.3	35	9.0	24	6.4
		24	6.5	23	6.3	23	6.2	23	6.2	24	6.3	35	9.0	24	6.4
		10	10	9	9	10) 10	10(11) 10	9	8(9)	10	10	10	9
		12	12	12	12	12	2 13	13	12	12	11	11	12	12	13

APPENDIX III ORGAN WEIGHTS IN PROPORTION TO THE BODY WEIGHT

The absolute and relative weights of visceral organs are tabulated in the following.

The numbers in parentheses show the percentage of each organ

weight to the body weight	ght.
---------------------------	------

	No. 6 ²⁾		No. 1	11)	No. 1	22)	No. 13 ¹⁾		
		225 cm. 우	227 cm.	우	221 cm.	우	208 cm	· 우	
Body wei	ght	<u> </u>	155.8	kg.	145.5	j kg	1101	دg.	
Brain		_	1060 g.	(0.68)	1100 g.	(0.76)	940 g.	(0.85)	
Heart		840 g.	1080	(0.69)	770	(0.53)	570	(0.52)	
1 (L		1880	2470	(1.59)	1855	(1.27)	1650	(1.50)	
Lung (R	L	2280	2350	(1.51)	1640	(1.13)	1980	(1.80)	
Stomach		1800	2600	(1.67)	1715	(1.18)	940	(0.86)	
Spleen		42	85	(0.053)	65	(0.045)	98	(0.089)	
Liver		2050	2740	(1.76)	1960	(1.35)	2200	(2.00)	
Pancreas		67	90	(0.058)	89	(0.061)	100	(0.091)	
Kidnow	ſL	295	670	(0.43)	276	(0.019)	340	(0.31)	
Kluney	(R	321	670	(0.43)	246	(0.017)	290	(0.26)	
Adronala	رL	5	11	(0.0071)	5	(0.0034)	8	(0.0073)	
Autenais	(R	5	10	(0.0064)			8	(0.0073)	
Thyroid		11	_				9	(0.0082)	
Thymus		_	_				32	(0.029)	
Hypophy	sis		0.8	(0.0051)	*****		0.65	(0.0059)	
Intestine		4000	4000	(2.56)	3100	(2.13)	3270	(2.97)	
**	length	15.2 m.	17.2 m	n.	14.7	m.	16.4	m.	
Adrenals Thyroid Thymus Hypophy Intestine	{L R sis length	5 5 11 	11 10 0.8 4000 17.2 m	(0.0071) (0.0064) (0.0051) (2.56)	5 3100 14.7	(0.0034) (2.13) m.	8 9 32 0.65 3270 16.4	(0.0073 (0.0073 (0.0082 (0.029) (0.0059 (2.97) m.	

¹⁾ Each organ was weighed at the autopsy of the fresh cadaver.

²⁾ Each organ was calculated from the value after preservation in formalin.

EXPLANATION OF PLATES

PLATE I

External features of Feresa attenuata

Top to bottom:

Lateral view of female fetus, body length 205 mm. Lateral view of female fetus, body length 530 mm. Lateral view of adult female. Dorsal view of adult male. Ventral view of the same porpoise.

PLATE II

Skulls of Feresa attenuata

Top to bottom: dorsal, lateral and ventral view. Left: male, body length 240 cm (Specimen No. 1). Right: female, body length 227 cm (Specimen No. 11).

PLATE III

Mandible of Feresa attenuata

Top: male, body length 240 cm (Specimen No. 1). Bottom: female, body length 227 cm (Specimen No. 11).

PLATE IV

Vertebrae of *Feresa attenuata*, female body length 225 cm (Specimen No. 6). Top to bottom: cervical and dorsal, lumbar, caudal and caudal vertebrae.

PLATE V

Flipper, dorsal fin and tail flukes (top to bottom) of Feresa attenuata.

Sci. Rep. Whales Res. Inst. No. 19

Sci. Rep. Whales Res. Inst. No. 19

PLATE IV M. NISHIWAKI, T. KASUYA, T. KAMIYA, T. TOBAYAMA, AND M. NAKAJIMA

