BODY AND ORGAN WEIGHT OF STRIPED AND SPOTTED DOLPHINS OFF THE PACIFIC COAST OF JAPAN

NOBUYUKI MIYAZAKI*, YOSHIHIRO FUJISE** AND TORAYA FUJIYAMA***

* National Science Museum, Tokyo ** Ehime University, Matsuyama *** University of the Ryukyus, Naha

ABSTRACT

Weights of body and thirteen organs of striped and spotted dolphins off the Pacific coast of Japan are presented in relation to age, body length and body weight. Sexual dimorphism is observed on body weight, and muscle, bone and spleen weight indicating that males have larger weight than females. Actual weights of organs attain the plateau at about 15 years, at 8 to 10 years, or at 2 years of age. Growth of organs expressed by the relative organ weight is classified into three types: (1) the ratio increases in the prenatal stage, then decreases in the juvenile stage, (2) the ratio increases in both stages, (3) the ratio decreases in the former stage, then increases in the latter. Growth coefficients of five organs (muscle, bone, kidney, pancreas and stomach) are larger in the postnatal stage than in the prenatal stage, while in other eight organs (viscera, blubber, brain, heart, lungs, liver, intestine and spleen) the growth pattern is reverse. The striped dolphin has heavier heart and longer intestine than the spotted dolphin of the same region. Present results were compared between published records of some cetaceans.

INTRODUCTION

Informations on organ weight are valuable for understanding of growth and physiological condition of the animals. Especially, in the study of the accumulation of organochlorines and heavy metals in the striped dolphin, *Stenella coeruleoalba* (Meyen, 1833), and the spotted dolphin, *Stenella attenuata* (Gray, 1846), being conducted by our project team, these informations are expected to be useful for estimating the amount of residues deposited in the organs from the data of concentration.

The weight of various organs of *Stenella* has been reported by several scientists. Organ weight of striped dolphins in the Mediterranean Sea was obtained from 12 juvenile or subadult dolphins (range: 147–196 cm in body length) (Gihr and Pilleri, 1969). Perrin and Roberts (1972) reported organ weight of 68 eastern Pacific spotted dolphins (range: 78–218 cm), and 14 eastern Pacific spinner dolphins (range: 105–177 cm). However, they did not analyze the relationship of organ weight and age, but the relationship of organ weight and body weight. The analysis of the former relationship is considered to throw a light on the further under-

Sci. Rep. Whales Res. Inst., No. 33, 1981, 27-67. standing of growth of the species.

The present study was undertaken to describe and analyze the growth of organs in the striped and spotted dolphins, and to compare the growth pattern of the species with that of other cetaceans.

MATERIALS AND METHODS

Specimens used in the present study were obtained from 11 schools of S. coeruleoalba and 5 schools of S. attenuata caught at Kawana $(34^{\circ}56'N, 139^{\circ}09'E)$, Futo $(34^{\circ}56'N, 139^{\circ}09'E)$ or Taiji $(33^{\circ}35'N, 135^{\circ}57'E)$ on the Pacific coast of Japan. The date covers 5 fishing seasons from 1968 to 1979 (Table 1).

Striped dolphins collected from 2 schools at Taiji on 18 December, 1978 (Date of the driving: 17 December, 1978) and 5 December, 1979 (Date of the driving: 4 December, 1979) were stored frozen at -20° C or less for about three months, and then their organs were accurately weighed in the laboratory. Organs under

Date of	T 1.		Number of	specimens	
examination	Locality —	Fetus	Female	Male	Total
Stenella coeruleoalba					
18 XI '68	Kawana	— (17)	()	— (<u>—</u>)	— (17)
18 X '70	Kawana	— (—)	2(1)	6 (3)	8 (4)
22 X '70	Futo	3 (1)	— (—)	— (—)	3 (1)
25 X '70	Kawana	()	— (—)	1 ()	1 ()
25 XI '70	Kawana	()	7 (6)	1 (1)	8(7)
26 XI '70	Kawana	— (2)	()	— (—)	— (2)
27 XI '70	Kawana	(2)	— ()	— (—)	— (2)
30 XI '70	Futo	— (9)	— (—)	— (—)	— (9)
2 XII '70	Kawana	— (4)	2 (3)	1 (2)	3(7)
3 XII '70	Kawana	— (2)	— (—)	— (—)	(2)
10 XII '70	Kawana	— (—)	1(1)	— (—)	1 (1)
15 XII '71	Kawana	— (23)	1 (—)	12 (—)	13 (23)
19 XII '78	Taiji	11 (11)	11 (11)	9 (9)	31 (13)
6 XII '79	Taiji	4 (4)	8 (8)	1 (1)	13 (13)
15 XII '79	Taiji	1 (1)	— (—)	()	1 (1)
unknown	Kawana	│ — (_9) /	— (—)	P — (—)	— (9)
Total		19 (83)	32 (30)	31 (16)	82 (129)
Stenella attenuata					
22 X '70	Kawana	()	8 (4)	2(1)	10 (5)
25 X '70	Kawana	(12)	()	()	(12)
31 X '70	Futo	— (1)	()	— (—)	(1)
6 XI '70	Futo	— (3)	7 (—)	3 ()	10 (3)
10 XI '70	Kawana	— (—)	23 (19)	12 (11)	35 (30)
12 XI '70	Kawana	— (7)	— ()	()	— (7)
16 XI '70	Futo	— (37)	— (—)	— (—)	(37)
Total		(60)	38 (23)	17 (12)	55 (95)

TABLE 1. LIST OF THE SPECIMENS USED IN THE PRESENT STUDY

Figures in parentheses indicate the number of individuals which were measured of their body weight only.

1 kg, those from 1 to 10 kg and those over 10 kg were measured in 0.1 g, 1 g and 10 g unit, respectively. In striped and spotted dolphins collected at Kawana and Futo between 1968 and 1971, lungs, liver and intestine were weighed in 10 g unit with spring scale in the field, and the other organs examined were weighed to 0.1 g in the laboratory within 24 hours after death. Body weight of the dolphins of the former case was measured in laboratory in 100 g unit before the dissection, and in the latter case it was obtained by combining the following two values; the body weight excluding viscera weighed by fishermen to the nearest 1 kg and the viscera weight obtained by Miyazaki as mentioned above. In both cases, the body weight of pregnant females having fetus was measured excluding the fetal and placental weight. Few females with corpus luteum and having no fetus are tentatively dealt as pregnant.

On 5 December 1979 only four pregnant females were collected at Taiji, and they show the extraordinary values of viscera, bone, heart and lungs weight compared with the females of the same sexual condition of the other fishing seasons. The difference is statistically significant (p < 0.001). Although true reason of this difference is not clear, it will be reasonable to ignore these extraordinary data. In this report, these data are presented in Appendix Tables and text figures, but they are excluded from the following analyses.

Muscle was weighed after chipping it from bone as much as possible, but some fragments of muscle were not able to be completely separated from bone. Thus, the muscle weight presented here shows slightly lower value than the real weight while the bone weight slightly higher than the real. Brain weight was measured after opening the skull. Stomach was weighed after separating four compartments and removing their contents, while intestine was weighed without removing the content because of difficulty of removing them.

The fetal age calculated from the fetal growth curve of Miyazaki (1977) is used in plotting the organ or body weight data in text figures. However, for the description and analyses of growth pattern the fetal stage is divided into three stages, the early (0-20 cm in body length), the middle (20-60 cm) and the late (60 cm-)fetal stages.

Based on Kasuya's method (1976) of age determination developed for the striped and the spotted dolphins, age was determined by counting the growth layers in dentine for the animals younger than 11 years and those in cementum for older animals. In the young animal of 177 cm or less in body length, age was estimated from age-body length relationship of *S. coeruleoalba* of Miyazaki (1977). The striped dolphins having the left testis exceeding 15.5 g were defined as the mature individual.

Weights of 13 organs (muscle, blubber, bone, viscera, heart, lungs, liver, kidney, pancreas, stomach, intestine, spleen and brain) of *S. coeruleoalba* were analyzed against age, body weight and body length However, in *S. attenuata* the latter eight organs were analyzed only in relation to the body weight and body length. The relationship of organ weight and body weight were calculated for the equation Log Y=a+b Log X by the least squares method, where Y represents organ weight

MIYAZAKI, FUJISE AND FUJIYAMA

in g, X, body weight in g, and b, Huxley's (1932) "growth coefficient". The growth coefficients of the relationship between organ weight and body weight were obtained excluding pregnant females. This equation was also used for the relationship between body weight (Y in g) and body length (X in cm). All the correlations examined in this study were statistically significant (p < 0.001). All the data analyzed in this study are shown in Appendix Tables 1, 2 and 3.

RESULTS

Body weight

Body weights of 83 fetal and 29 postnatal striped dolphins are plotted on age (Fig. 1). The growth in the first two years is rapid. The body weights at the age of 1 year (49 kg) and 2 years (61 kg) are about 4 and 5 times as much as the value of 12 kg at birth, respectively. Since the body weight of the pregnant females is not significantly different from that of the non-pregnant adult females (0.2 , the body weights of these females are not dealt separately in this section. As shown in Fig. 1, body weight of striped dolphins attains the plateau at the age of 15 years. The asymptotic body weights calculated as the mean of four males and 10 females

Fig. 1. The relationship between body weight and age in the striped dolphin off the Pacific coast of Japan. Closed circle with bar indicates mature male, open circle with dot pregnant female, open circle with external bar resting female, open circle with internal bar lactating female, closed triangle immature male, open triangle immature female, and closed circle the mean of fetuses in each 10 cm of body length interval.

over 15 years of age are 157.5 kg and 135.9 kg, respectively. The difference between sexes is significant (p < 0.02).

The relationships between body weight and body length given in Table 2 are obtained from 83 fetal and 46 postnatal striped dolphins (16 males and 30 females), and 60 fetal and 35 postnatal spotted dolphins (12 males and 23 females). As the relationship of body weight and body length in the striped dolphins can be expressed by two equations (Fig. 2), the two regression lines are calculated for 9 fetuses below 7 cm of body length and for 74 fetuses of 7 cm or more. The value b for the former stage is 1.563 and is certainly lower than 2.779 of the value for the latter stage. The value of b of all the postnatal females is 2.910 and is close to 2.975 of the postnatal males. These two values are higher than above two values of fetuses.

All fetuses of the spotted dolphins presented here range from 6.5 to 29.5 cm in body length. The body weight-body length relationship of the species in this range can be shown by a single equation (Fig. 3). The value of growth coefficient b of these fetuses is 2.859, and is higher than any of the two values calculated for the fetal striped dolphins (Table 3). Since body weight of the postnatal spot-

Fig. 2. The relationship between body weight and body length in the striped dolphin off the Pacific coast of Japan. Open circle indicates fetuses and closed circle postnatal animals.

Fig. 3. The relationship between body weight and body length in the spotted dolphin off the Pacific coast of Japan. Open circle indicates fetuses and closed circle postnatal animals.

MIYAZAKI, FUJISE AND FUJIYAMA

		S. coerule	oalba			S. attenu	attenuata b r Sample size 2.859 0.962 60			
	a	b	r	Sample size	a	b	r	Sample size		
Fetal samples										
Samples less than 7 cm	-0.402	1.563	0.906	9						
Samples of 7 cm and more	-1.507	2.779	0.997	74						
Samples in total	-1.214	2,602	0.995	83	-1.575	2.859	0.962	60		
Postnatal samples										
Samples of male	-1.856	2.975	0,980	16						
Samples of female	-1.737	2.910	0.986	30						
Samples collected in 1970–1977	-1.709	2.897	0.943	17						
Samples collected in 1978 & 1979	-1.796	2.943	0.994	29						
Samples in total	-1.767	2.927	0,983	46	-1.900	2,928	0.981	35		
Fetal and Postnatal samples										
Fetuses of 7 cm and more, and postnatal samples in total	-1.612	2.853	0.999	120						
Both fetal and postnatal samples in total	-1.391	2.742	0.997	129	-1.368	2.690	0.997	95		

TABLE 2. RELATIONSHIP BETWEEN BODY WEIGHT (G) AND BODY LENGTH (CM) IN STENELLA COERULEOALBA AND STENELLA ATTENUATA

Values of a, b, and correlation coefficient r in linear regression equation Log Y=a+b Log X, where Y=body weight (g) and X=body length (cm).

ted dolphins was measured with the loss of some blood and fluid, the growth coefficient of the species has to be compared with the corresponding value of the striped dolphins obtained by the same method (1970–1977 data). The value b in the former species is 2.928 and is close to the value of 2.897 in the latter species. These values are slightly higher than 2.859 of the prenatal spotted dolphins. This suggests that, in both species, the growth coefficient of the postnatal dolphins may be slightly higher than that of the prenatal stage.

Organ weight

When the sum of the proportional weights is compared with the body weight measured before dissection, the values of 42 striped dolphins collected in 1978 and 1979 come between 85.9 and 100% (Appendix Table 1). The mean of the loss through the dissection is only 3.4%, and is negligible.

As shown in this section, the adult males exceed the adult females in the weight of muscle, bone and spleen. In the weight of all the 13 organs examined in this study, the mean value of the pregnant females show no significant difference from the corresponding values of the non-pregnant adult females (at p=0.05). Among major four components (muscle, blubber, bone and viscera), the muscle has the highest growth coefficient value, and is followed by blubber, viscera and bone (Table 3).

Muscle: Muscle weight is plotted on age for 41 striped dolphins (13 fetuses, and 10 male and 18 female postnatals) (Fig. 4). The increase of muscle weight in the

STRIPED AND SPOTTED DOLPHINS

			S. coeruleo	alba			S. attenue	ata	
Organs	Stage	a	b	r	Sample size	a	b	r	Sample size
Heart	prenatal	-2.2644	1,0833	0.9782	17				-
	postnatal	-1.6983	0.9177	0.9454	31	-1.8788	0.9213	0.9714	34
	total	-1.8665	0.9565	0.9858	48				01
Lungs	prenatal	-1.3167	1.0104	0.9948	17				
	postnatal	-0.0264	0.6543	0.8838	34	-0.6814	0.7849	0.9117	38
	total	-0.5534	0,7691	0.9752	51				00
Liver	prenatal	-1.5375	0.9765	0.9873	16				
	postnatal	-1.1591	0.8693	0.9427	34	-0.3599	0.7316	0 9358	38
	total	-1.2612	0.8922	0.9896	50			*1*000	00
Left kidney	prenatal	-2.2526	0.9819	0.9817	17				
	postnatal	-2.8761	1.0501	0,9742	32	-2.7986	1.0744	0 9780	15
	total	-1.8665	0.8495	0,9832	49			0.0700	15
Pancreas	prenatal	-3,6990	1.1311	0.4609	5				
	postnatal		1,5107	0.8800	29	-3.5229	1 1668	0 9521	97
	total	-3.3979	1,3027	0.9331	34	010110	1.1000	0.5551	41
First stomach	prenatal	-2.7932	1,0023	0.9883	14				
	postnatal	-5.0000	1.5634	0.9673	29	-4.2218	1 4174	0 9027	90
	total	-3.7447	1.2605	0.9833	43			0.3027	20
Second	prenatal	-2.8601	0,9890	0.9857	14				
stomach	postnatal	-3.4559	1.1566	0.9512	29	-3 3098	1 1681	0 0803	00
	total	-3.3768	1.1373	0.9885	43	010000	1.1001	0.5002	20
Intestine	prenatal	-2.6536	1.2375	0.9959	15				
	postnatal	-1.5538	0.9825	0.9452	34	-1 4629	0 0251	0.0616	20
	total	-2.3161	1.1396	0.9927	49	1.1020	0.3031	0.9010	30
Spleen	prenatal	-3.8861	1.1374	0.8160	12				
•	postnatal	-1.1532	0.5267	0.5528	34	-0 7820	0 4500	0 5700	00
	total	-2.7645	0.8538	0.8791	46	0.7020	0,4330	0.5702	28
Brain	prenatal	-1.9508	1,1488	0.9965	15				
	postnatal	1.8742	0.2140	0 8279	22				
	total	-0.6894	0.7528	0.9420	37				
Muscle	prenatal	-1 1032	1 1296	0.9963	12				
	postnatal	-1.0747	1 1585	0,9966	21				
	total	-1.3338	1.2076	0 9980	34				
Blubber	prenatal	-1.6247	1 2718	0.9990	12				
	postnatal	0.0487	0.8419	0.9923	91				
	total	-0.9170	1 0474	0.0020	21				
Bone	prenatal	0 1726	0 7843	0,000	14				
	postnatal	-0.3801	0.2015	0.0020	91				
	total	0 1996	0 7971	0.0091	25				
Viscera	prenatal	-1.9337	1 1050	0.0021	14				
Viscera I	postnatal	-0.3234	0 8653	0.0001	91				
	total	-0.8263	0 9783	0.0016	21				
		0.0200	0.0/00	0.0010					

TABLE 3. RELATIONSHIP BETWEEN ORGAN WEIGHTS AND
BODY WEIGHT FOR STENELLA COERULEOALBA AND
STENELLA ATTENUATA

Values of a, b, and correlation coefficient r is linear regression equation Log Y=a+b Log X, where Y=organ weight (g) and X= body weight (g).

first two years is rapid, and slows between the age of 3 and 15 years. After the age of 15 years, the weight attains the plateau. In this age range, the mean weight of males is 87,375 g (n: 4, range: 78,460-91,430 g) and is larger than 74,624 g (n: 10, range: 58,910-86,000 g) of females. The sexual difference of the mean weights is significant (0.01).

The ratio of muscle to body weight for 41 striped dolphins is plotted on age (Fig. 5). This ratio is positively correlated with age in the fetal stage. Then, it increases faster from birth to the age of 2 years when the value attains around 50%. After this age the ratio for 20 striped dolphins remains nearly constant within the range of 49.8 to 59.8% (mean: 54.5%).

Blubber: Blubber weight is plotted against age for 42 striped dolphins (14 fetuses, and 10 male and 18 female postnatals) (Fig. 6). Increase of blubber weight stops around the age of 15 years. The mean weight of 14 striped dolphins over this age is 24,663 g (17,090-31,390 g). In this age range there is no significant sexual

Fig. 4. The relationship between muscle weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 5. The relationship between the relative muscle weight and age in the striped dolphin off the Pacific coast of Japan. Closed circle indicates male fetus and open circle female fetus. For other marks see Fig. 1.

difference in the mean blubber weight (0.8 .

The ratio of blubber to body weight for 41 striped dolphins is plotted on age (Fig. 7). The rapid increase of the ratio starts at the middle fetal stage and attains the maximum value on the nearterm fetus. Then, it is followed by a rapid decrease in the neonatal stage. After the age of 2 years the ratio of 20 striped dolphins becomes constant within the range of 14.0 to 19.2% (mean: 17.3%).

Bone: Bone weight is plotted on age for 42 striped dolphins (14 fetuses, and 10 male and 18 female postnatals) (Fig. 8). Rapid increase is observed in the first two years after birth. The weight increases up to the age of around 15 years and attains the plateau at this age. In the age range above 15 years, the mean bone weight of 4 males is 18,620 g (range: 17,900-19,650 g) and is significantly larger than 14,502 g (11,300-16,800 g) of 10 females (p<0.001).

The ratio of bone to body weight for 42 striped dolphins is plotted against age (Fig. 9). The ratio decreases rapidly from the middle to the late fetal stage, then

Fig. 6. The relationship between blubber weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 7. The relationship between the relative blubber weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 5.

Sci. Rep. Whales Res. Inst., No. 33, 1981

Fig. 8. The relationship between bone weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1. The pregnant females surrounded by dotted line were collected on 5 December 1979.

Fig. 9. The relationship between the relative bone weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Figs 5 and 8.

it decreases at slower rate until the age of 2 years. After this age, the ratio of 16 striped dolphins becomes constant within the range of 9.7 to 15.6% (mean: 12.7%). *Viscera*: Fig. 10 shows the relationship between viscera weight and age of 42 striped dolphins (14 fetuses, and 10 male and 18 female postnatals). The weight increases till the age of around 15 years, and then becomes constant. In the age range above 15 years, the mean weight of 11 striped dolphins is 13,764 g (range: 11,120-17,180 g).

The ratio of viscera to body weight for 42 striped dolphins rapidly increases from the middle to the late fetal stage, and sharply decreases after birth (Fig. 11). After the age of 2 years, the ratio continues to decrease at slower rate in the range of 7.8 to 13.1% (n: 16, mean: 9.8%).

Brain: Brain weight is plotted on age for 46 striped dolphins (17 fetuses, and 10

Fig. 10. The relationship between viscera weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Figs 1 and 8.

Fig. 11. The relationship between the relative viscera weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Figs 5 and 8.

Fig. 12. The relationship between brain weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 13. The relationship between the relative brain weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 5.

Fig. 14. The relationship between brain weight and body length in the striped dolphin off the Pacific coast of Japan.

male and 19 female postnatals) (Fig. 12). The weight rapidly increases from the middle fetal stage to the age of 2 years, then it increases at slower rate until the age of 8 years. In the animals over 8 years of age, the weight becomes constant within the range of 731 to 1,097 g (n: 18, mean: 935 g). The mean brain weight of adult animals shows no significant sexual difference (0.5 .

The ratio of brain to body weight for 42 striped dolphins is plotted against age (Fig. 13). The ratio rapidly increases from the middle to the late fetal stage, but sharply decreases from birth to the age of 2 years. Then the ratio stays almost constant within the range of 0.53 to 1.01% (n: 20, mean: 0.72%).

The value of the growth coefficient calculated for 15 prenatal striped dolphins is 1.1488. This is contrasted with the low value of 0.2140 of 22 postnatal individuals of the same species (Table 3).

Figure 14 shows the relationship between brain weight and body length for 46 striped dolphins. The brain weight increases lineally from 45 to 140 cm in body length, then the increase becomes at lower rate and finally stops after body length of 210 cm, where the species attain sexual maturity.

Fig. 15. The relationship between heart weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Figs 1 and 8.

Fig. 16. The relationship between the relative heart weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Figs 5 and 8.

Heart: Heart weight is plotted on age for 64 striped dolphins (19 fetuses, and 23 male and 22 female postnatals). The weight increases rapidly from birth to the age of 2 years, then increases slowly till 15 years of age. After this age, the weight attains the plateau (Fig. 15) with the mean weight of 1,170 g (n: 11, range: 683 - 1,580 g). In this age range there is no significant sexual difference in the mean heart weight (0.2).

The ratio of heart to body weight is plotted against age for 45 striped dolphins (Fig. 16). The ratio increases from the middle to the late fetal stage, but sharply decreases from birth to the age of 2 years when it attains the value of about 0.9%. In the animals over 2 years of age, the ratio of 11 striped dolphins remains nearly constant within the range of 0.62 to 1.15% (mean: 0.845%).

The relative growth coefficient for 31 postnatal striped dolphins is 0.92 and is same with 0.92 for 34 postnatal spotted dolphins. However, these values are lower than 1.08 of 17 prenatal striped dolphins (Table 3).

Fig. 17. The relationship between heart weight and body length in the populations of *Stenella*. Open circle indicates the striped dolphin off the Pacific coast of Japan, closed circle the spotted dolphin off the Pacific coast of Japan and double crosses the striped dolphin in the Mediterranean Sea. For marks see Fig. 8.

Fig. 18. The relationship between lungs weight and age in the striped dolphin. For marks see Figs 1 and 8.

Comparison of the heart weight-body length relationship between two species of *Stenella* indicates that the striped dolphins off the Pacific coast of Japan have heavier heart than the spotted dolphins of the same body length in the same area (Fig. 17). Heart weight of the striped dolphins from Japanese areas shows a large individual variation at body lengths of 220 cm or more, where the species attains sexual maturity. The weight of the striped dolphins in the Mediterranean Sea (Gihr and Pilleri, 1969) was distributed in the individual variation of the species from Japanese areas (Fig. 17).

Lung: The weight of lungs is plotted on age for 64 striped dolphins (19 fetuses, and 23 male and 22 female postnatals) (Fig. 18). The increase of the weight is rapid in the first two years, and stops at the age of about 15 years. After this age, the mean weight of lungs of 11 striped dolphins is 2,347 g (range: 1,722-3,070 g). In this age range there is no significant sexual difference in the mean weight of

Fig. 19. The relationship between the relative lungs weight and age in the western Pacific striped dolphin. For marks see Figs 5 and 8.

Fig. 20. The relationship between lungs weight and body length in the populations of *Stenella*. For marks see Figs 8 and 17.

lungs (0.6<p<0.7).

The ratio of lungs to body weight is plotted against age for 45 striped dolphins (Fig. 19). The ratio increases from the middle to the late fetal stage, then it decreases sharply until the age of 2 years. After this age the ratio stays nearly constant within the range of 1.26 to 2.35% (n: 16, mean: 1.69%).

Table 3 shows the relative growth coefficient of the weight of lungs. The value of 0.654 obtained from 34 postnatal striped dolphins is obviously lower than 1.01 of 17 prenatals of the same species, and is also slightly lower than 0.785 of 38 postnatal spotted dolphins.

The relationship between the weight of lungs and body length in the two species of *Stenella* is shown in Fig. 20. The weight of lungs of striped dolphins off the Pacific coast of Japan appears to be different neither from the same species in the Mediterranean Sea nor the spotted dolphins in the Japanese waters.

Liver: Based on 63 striped dolphins (18 fetuses, and 23 male and 22 female postnatals), the relationship between liver weight and age is shown in Fig. 21. The

Fig. 21. The relationship between liver weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 22. The relationship between the relative liver weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 5.

weight increases rapidly in the first two years, then the increase becomes slower until the age of 15 years. After this age the weight attains the plateau with the mean of 2,399 g (n: 14, range: 1,650-4,510 g). In the animals of this age range, there is no significant sexual difference in the mean liver weight (0.5 .

The ratio of liver to body weight is plotted on age for 44 striped dolphins (Fig. 22). The ratio increases from the middle to the late fetal stage, then decreases sharply until the age of 2 years. After this age the ratio stays nearly constant within the range of 1.22 to 2.94% (n: 20, mean: 1.67%).

The growth coefficient of liver weight is shown in Table 3. The value for 34 postnatal striped dolphins is 0.869. This is lower than 0.997 for 16 prenatal individuals of the same species, but is higher than 0.732 for 38 postnatal spotted dolphins.

The relationship between liver weight and body length of the two species of

Fig. 23. The relationship between liver weight and body length in the populations of *Stenella*. For marks see Fig. 17.

Fig. 24. The relationship between the left kidney weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Stenella is shown in Fig. 23. The liver weight of the striped dolphins off the Pacific coast of Japan appears to be almost similar to the same species in the Mediterranean Sea and the spotted dolphins in the Japanese waters.

Kidney: Since the mean weight of kidneys of the striped dolphins shows no significant bilateral asymmetry (p>0.9), only the left kidney is plotted in the present study on age for 61 striped dolphins (19 fetuses, and 20 male and 22 female postnatals) (Fig. 24). The weight continues to increase till 15 years of the age, and then attains the plateau. The mean weight of the left kidneys of 14 striped dolphins over 15 years of age is 362 g (range: 216-475 g). In this age range, the sexual difference of the mean left kidney weight is not significant (0.7 .

The ratio of kidneys to body weight increases from the early to the middle

Fig. 25. The relationship between the relative kidneys weight and age in the striped dolphin. For marks see Fig. 5.

Fig. 26. The relationship between the left kidney weight and body length in the populations of *Stenella*. For marks see Fig. 17.

fetal stage, but after the latter stage it sharply decreases until the age of around 2 years (Fig. 25). After this age the ratio becomes constant within the range of 0.31 to 0.74% (n: 20, mean: 0.50%).

Table 3 shows the growth coefficient of the left kidney weight. The value of 1.05 for 32 postnatal striped dolphins is close to that of 1.07 for 15 postnatal spotted dolphins. However, these values are slightly higher than 0.982 of the corresponding value of 17 prenatal striped dolphins.

The relationship of the left kidney weight to body length of the two species of *Stenella* is shown in Fig. 26. The kidney weight of striped dolphins off the Pacific coast of Japan is almost similar to the same species in the Mediterranean Sea and the spotted dolphins in the Japanese waters.

Pancreas: Pancreas weight is plotted on age for 36 striped dolphins (22 male and 14 female postnatals) (Fig. 27). The weight increases rapidly to the age of 8

Fig. 27. The relationship between pancreas weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 28. The relationship between the relative pancreas weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 5.

years, and the increase becomes slow between the age of 8 and 15 years. After the age of 15 years, the weight attains the plateau, and gives the mean weight of 157 g (n: 11, range: 102–200 g). In the animals of this age range, the mean weights of pancreas show no significant sexual difference (0.5 .

The ratio of pancreas to body weight is plotted on age for 32 striped dolphins (Fig. 28). Although the ratio shows larger individual variation in both the newborn calves and in the adult animals, it becomes constant after 2 years of the age. The ratio ranges from 0.067 to 0.16% (n: 16, mean: 0.12%).

The growth coefficient of pancreas weight is shown in Table 3. The coefficient 1.56 calculated for 29 postnatal striped dolphins is higher than any of 1.13

Fig. 29. The relationship between pancreas weight and body length in the populations of *Stenella*. For marks see Fig. 17.

Fig. 30. The relationship between the first stomach weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

for 5 prenatal of the same species or 1.17 for 27 postnatal spotted dolphins.

Figure 29 shows the relationship between pancreas weight and body length. This indicates that the striped dolphins off the Pacific coast of Japan have almost same pancreas weight to the spotted dolphins in the same area. The pancreas weight of the striped dolphins in the Mediterranean Sea shows considerably higher value than those of the striped and the spotted dolphins off the Pacific coast of Japan.

Stomach: Although each compartment of stomach cannot be recognized in the fetus below 3 cm in body length, the differentiation of the first and the second stomach was observed in the fetus over 12 cm in body length. On the other hand, the differentiation of the third and the fourth stomach was able to be observed at about the body length of 60 cm, or about 4—5 months after the differentiation of the first and the second stomach.

Weights of the first and the second stomach are plotted on age for 55 striped

Fig. 31. The relationship between the second stomach weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 32. The relationship between the relative first stomach weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

dolphins (10 fetuses, and 23 male and 22 female postnatals) (Figs. 30 and 31). The weight of the first stomach increases rapidly from birth to the age of 15 years, then attains the plateau. On the other hand, the rapid growth of the second stomach lasts only till the age of 8 years, then it slows until the cessation of the growth at the age of 15 years. In 14 striped dolphins above 15 years, the mean weights of the first and the second stomach are 633 g (range: 491-813 g) and 302 g (220-375 g), respectively. The sexual difference of the mean weight of the first or the second stomach is not statistically significant (p>0.2). Comparison of the first stomach with the second stomach of the striped dolphins shows that the age when the weight of the first stomach starts to exceed that of the second stomach is around 2 years, and this age is close to the age at the completion of weaning in the species (Miyazaki, 1977).

In the 23 adult striped dolphins, the mean weight of the third stomach is 106 g (range 56—194 g), and is 1.6 times as large as that of the fourth stomach (mean: 67.8 g, range: 23—145 g).

Figures 32 and 33 show the relationship between the relative weight of the

Fig. 33. The relationship between the relative second stomach weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 5.

Fig. 34. The relationship between the first stomach weight and body length in the populations of *Stenella*. For marks see Fig. 17.

first or second stomach and the age. The values of both compartments decrease slightly from the middle to the late fetal stage, and show the rapid increase after birth. The relative weight of the first stomach becomes constant after 8 years of the age within the range of 0.36 to 0.54% of body weight (n: 17, mean: 0.44%). On the other hand the value of second stomach remains nearly constant after the age of 2 years within the range of 0.15 to 0.28% of body weight (n: 20, mean: 0.22%).

Table 3 shows the relative growth coefficient of stomach. In case of 14 prenatal striped dolphins, the growth coefficient of the first stomach is 1.00 and close to 0.989 of the corresponding value of the second stomach. However, in 29 postnatal individuals of the species the value of the first stomach 1.56 is higher than

Fig. 35. The relationship between the second stomach weight and body length in the populations of *Stenella*. For marks see Fig. 17.

Fig. 36. The relationship between intestine weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

1.16 of the second stomach. This means that the relative growth of the first stomach is almost same to the second stomach in the prenatal stage, but in the postnatal stage the first stomach grows faster than the second stomach.

Figures 34 and 35 indicate that the stomach weight of the striped dolphins off the Pacific coast of Japan is almost similar to the same species in the Mediterranean sea and the spotted dolphins in Japanese waters.

Intestine: Intestine weight is plotted on age for 61 striped dolphins (17 fetuses, and 23 male and 21 female postnatals) (Fig. 36). The weight increases rapidly from birth to the age of 8 years, then it becomes constant within the range of 2,020 to 4,040 g (n: 18, mean: 2,956 g). There is no sexual difference of mean intestine weight in these individuals above 8 years (0.2).

Figure 37 shows the relationship between intestine length and age of 26 striped

Fig. 37. The relationship between intestine length and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 38. The relationship between the relative intestine weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 5.

dolphins (7 fetuses, and 3 male and 16 female postnatals). Intestine length increases rapidly from the middle fetal stage to the age of 2 years, then at a slower rate until 15 years when the increase stops. The mean intestine length of 10 individuals over 15 years of age is 2,2026 cm (range: 1,687-2,325 cm).

The ratio of intestine weight to body weight is plotted on age for 41 striped dolphins (Fig. 38). It increases rapidly from the middle fetal stage to the age of 2 years, then decreases until the age of about 10 years. After this age, the ratio becomes constant within the range of 1.56 to 2.69% (n: 16, mean: 2.14%).

Table 3 shows the relative growth coefficients of intestine weight. The value 0.983 of 34 postnatal striped dolphins is close to 0.985 of 38 postnatal spotted dolphins, but they are smaller than 1.24 of 15 prenatal striped dolphins.

The relationships between intestine weight and body length of striped and spotted dolphins off the Pacific coast of Japan are shown in Fig. 39. No difference is expected between two species.

Fig. 39. The relationship between intestine weight and body length in the populations of *Stenella*. For marks see Fig. 17.

Fig. 40. The relationship between intestine length and body length in the populations of *Stenella*. For marks see Fig. 17.

Figure 40 shows the relationship between intestine length and body length. There is no available data in the early fetal stage. In the striped dolphins off the Pacific coast of Japan, the intestine length increases lineally from the middle fetal stage to the body length of about 120 cm, where some of individuals start to feed the solid food (Miyazaki, 1977). The length increases at lower rate between 120 and 190 cm in body length. After this stage it grows at higher rate. Comparison of intestine length between spotted and striped dolphins of the same body length off the Pacific coast of Japan shows that the latter species has longer intestine than the former species.

Spleen: Spleen weight is plotted on age for 58 striped dolphins (14 fetuses, and

Fig. 41. The relationship between spleen weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 1.

Fig. 42. The relationship between the relative spleen weight and age in the striped dolphin off the Pacific coast of Japan. For marks see Fig. 5.

22 male and 22 female postnatals) (Fig. 41). The weight increases rapidly for about 2 years after birth, then it becomes difficult to find any trend owing to large individual variation. In the 62 postnatal striped dolphins, the mean weight of spleens of 30 males is 43.9 g (range: 12-110 g) and is significantly larger than that of 26.7 g (8.2–69.8 g) for 32 females (p<0.01).

The ratio of spleen to body weight is plotted against age for 38 striped dolphins (Fig. 42). It increases rapidly from the middle fetal stage to the neonatal stage, and before reaching at the age of 2 years it sharply decreases to the value of the former stage. After this age the ratio becomes constant within the range of 0.009 to 0.048% (n: 20, mean: 0.026%).

The relative growth coefficients of spleen are shown in Table 3. In 12 prenatal striped dolphins the coefficient is 1.14 and higher than 0.527 of 34 postnatals of the same species. The latter figure is slightly higher than 0.459 of 28 postnatal spotted dolphins. The increase of spleen weight, both in striped and spotted dol-

Fig. 43. The relationship between spleen weight and body length in the three populations of *Stenella*. For marks see Fig. 17.

phins, stops at the length of 150 cm. The individual variation of the weight is large (Fig. 43). In the striped dolphins off the Pacific coast of Japan the mean spleen weight of males is significantly larger than that of females in the body length of 150 cm or more (p<0.001). However, in the spotted dolphins of the same area there is no significant sexual dimorphism in the spleen weight (0.1).

DISCUSSION

The organs of the striped dolphins are classified into the following three groups based on the age when actual weight of organ attains the plateau. (1): Organs that attain plateau around 15 years of age: muscle, blubber, bone, viscera, heart, lungs, liver, kidney, pancreas and stomach. (2): Organs that attain plateau around 8 or 10 years of age: brain and intestine. (3): Organs that attain plateau at the neonatal stage: spleen. According to Kasuya (1976) and Miyazaki (1977), the mean age at the attainment of sexual maturity in the striped dolphins is about 9 years. Then, it can be said that the age when the growth of brain or intestine stops seems to coincide with this age. From the feature of the mean growth curve, Kasuya (1976) reported that the age at the attainment of asymptotic length of the species is about 17 years in females and about 21 years in males. The osteological study by Ito and Miyazaki (unpublished) showed that the physically mature striped dolphin starts to appear at the age of 16 years. Accordingly, it is reasonable to expect that the mean age at the attainment of physical maturity might come to the range of 16 to 20 years of age. Therefore, growth of the above ten organs of Group (1) is considered to stop nearly at the attainment of physical maturity. Among 13 organs examined here, spleen appears to be an exceptional organ of which growth stops in the neonatal stage. Based on the growth pattern of the relative organ weight in the prenatal and juvenile stages, the organs can be classified into the following three types. As there are few available data for the early

fetal stage, the growth pattern of the stage is not considered.

- Type I: The ratio increases sharply from the middle to the late fetal stage. After birth it decreases rapidly until the age of about 2 years, then becomes constant. Ten organs (blubber, bone, viscera, brain, heart, lungs, liver, kidney, pancreas and spleen) belong to this Type. Among them, bone, viscera and brain show slight decrease after about 2 years.
- Type II: The ratio increases in the fetal stage and continues to increase in the juvenile stage. This type includes muscle and intestine. The ratio of muscle attains the plateau at the age of 15 years. In the case of intestine the ratio attains the plateau after slight decrease between 2 and 10 years.
- Type III: The ratio decreases from the middle fetal stage to birth, then increases in the juvenile stage. This type is represented by the first and the second stomach. The relative organ weights of the first and of the second stomach attain the plateau at the age of about 15 and 2 years, respectively.

Figure 44 shows the least squares regressions of the relationship between body weight and body length of three species of *Stenella*. As the body weight of the spotted dolphins off the Pacific coast of Japan was measured with the loss of some blood and fluid, they were excluded from the following discussion. For *S. graffmani*=*S. attenuata* (*fide* Perrin, 1975) and *S. longirostris*, the equation of this relationship was calculated from data of Perrin and Robert (1972) by means of the least squares method (Log Y=a+b Log X, Y: body weight in g, X: body length in

Fig. 44. Comparison of the relationship of body weight to body length in the populations of *Stenella*. These lines are obtained from the equation calculated on the relationship (see text).

STRIPED AND SPOTTED DOLPHINS

cm). The relationships indicate that S. coeruleoalba off the Pacific coast of Japan has larger body weight than any of S. attenuata or S. longirostris in the eastern Pacific.

The growth coefficients of 13 organs are shown in Table 3. The coefficients of muscle, bone, kidney, pancreas and stomach is higher in the postnatal stage than in the prenatal stage. This means that these five organs grow faster in relation to the increase of the body weight in the former stage than in the latter stage. On the other hand, other 8 organs (blubber, viscera, brain, heart, lungs, liver, intestine and spleen) show reverse growth pattern. The growth pattern of brain obtained in this study appears to be similar to the result of Pirlot and Kamiya (1975).

Table 4 shows the relative growth coefficients of some organs of three species of Stenella. The significant difference of growth coefficient between populations was tested at p=0.05 only for the organs represented by 30 or more data. The above analysed on heart, lungs and liver are appropriate for the three populations of the dolphins, because the data of the western Pacific spotted and striped dolphins and of the spotted dolphins in the eastern Pacific cover a wide range of the growth stage. The growth coefficient of the heart for the spotted dolphins off the Pacific coast of Japan is close to that of the striped dolphins of the same areas, but the coefficient of the former species is significantly higher than that of the spotted dolphins in the eastern Pacific. The difference of the coefficients of liver between above two populations of the spotted dolphins is significantly larger than that between the striped and spotted dolphins in the same region. In case of lungs, there is no significant difference of the coefficient between the above three populations of two species of Stenella. From these informations it is suggested that the growth coefficient of organs may not be always the diagnostic character for the species, and in some cases the difference of the coefficients between populations of the same species is larger than their difference between species.

0	S. coerul	eoalba	S. at	tenuata	S. longirostris		
Organs	Mediterranean ²⁾	W. Pacific ³⁾	W. Pacific ⁴⁾	E. Pacific ⁵⁾	E. Pacific ⁶⁾		
Heart	1.014 (7)	0.957(48) ±0.024	$0.921(34) \pm 0.081$	0.769(47) ±0.026	0.820(13)		
Lungs	0,640 (7)	$0.769(51) \pm 0.050$	0.785(38) ±0.121	$0.880(35) \pm 0.037$	0.947 (4)		
Liver	0.684 (7)	0.892(50) ±0.040	0.732(38) ± 0.094	1.129(60) ± 0.041	0.608(13)		
Left kidney	0.960 (7)	0.850(49)	1.074(15)				
Pancreas	0.438 (7)	1.303(34)	1.167(27)				
Spleen	0.798 (7)	0.854(46)	0.460(28)	ನ1.010(36) ♀1.057(24)			
Brain	0.569(10)	0.753(37)		-			

TABLE 4. THE GROWTH COEFFICIENT AND ITS 95% CONFIDENCE RANGE ON THE RELATIONSHIP BETWEEN ORGAN WEIGHT AND BODY WEIGHT IN *STENELLA.*¹⁾

1): Figures in parentheses indicate the number of specimens

2): Gihr and Pilleri (1969). 3) and 4): Present data. 5) and 6): Perrin and Roberts (1972).

Species	Blubber	Muscle	Bone	Viscera
P. catodon	34	35	11	8
B. musculus	27	40	16	11
B. physalus	24	45	17	10
B. borealis	22	62	15	9
E. sieboldi	40	30	14	13
S. coeruleoalba*	17.3	54.5	12.7	9.8
	(14, 1-19, 2)	(49.8 - 59.8)	(9.7 - 15.0)	(7.8 - 15.1)

TABLE 5. MEAN WEIGHT OF BLUBBER, MUSCLE, BONE AND VISCERA IN SOME CETACEANS EXPRESSED OF BODY WEIGHT. FIGURES OTHER THAN S. COERULEOALBA WERE CITED FROM BRYDEN (1972).

* Body weight was measured before dissection.

Figures in parentheses indicate range.

TABLE 6. THE WEIGHT OF ORGANS EXPRESSED AS A PERCENTAGE OF BODY WEIGHT IN SOME CETACEANS. FIGURES OTHER THAN S. COERULEOALBA WERE CITED FROM BRYDEN (1972).

Species	Brain	Heart	Lungs	Liver	Kidneys	Pancreas	Spleen	Stomach	Intestine
P. catodon	0.021	0.3	0.9	1.6	0.5	0.07	0.01	0.8	1.6
D. leucas	0.78	0.6	3.7	1.5	0.4		0.03	—	—
T. truncatus	1.45	1.0	2.9	2.2	1.1	-	0.09		
P. phocoena	1.22	0.8	3.5	3.2	0.8	0.16	0.02	Press.	
B. musculus	0.011	0.5	0.8	1.2	0.4	—	0.02	0.5	1.4
B. physalus	0.014	0.7	0.8	1.0	0.4	_		0.6	1.9
B. borealis		0.4	0.8	1.3	0.4		-	1.0	2.5
E. sieboldi	0.004	0.5	0.5	0.9	0.4	-	0.02	0.4	1.6
S. coeruleoalba	0.72	0.85	1.69	1.67	0.50	0.12	0.026	0.70	2.16
	(0.53- 1.01)	(0.62 - 1.15)	(1.26- 2.35)	(1.22- 2.94)	(0.31- 0.74)	(0.067- 0.16)	(0.009- 0.048)	(0.62- 0.94)	(1.56 - 2.69)

Figures in parentheses indicate range.

Table 5 shows the mean weight of blubber, muscle, bone and viscera in some cetaceans expressed as a percentage of body weight. The value of *S. coeruleoalba* was calculated as the mean of organs at the attainment of plateau. The proportional weight of blubber in the striped dolphins is remarkably lower than in the sperm whale and baleen whales. In case of muscle, the striped dolphin shows higher value than the sperm whale and baleen whales except for *Balaenoptera borealis*. The value of bone or viscera for *S. coeruleoalba* is distributed within the interspecies variation of five species.

The mean weight of brain and 8 visceral organs in some cetaceans expressed as a percentage of body weight is shown in Table 6. The values of the striped dolphins were obtained from the animals whose organ ratio attained plateau. The proportional values of brain for Delphinidae are considerably higher than those of the sperm whale and baleen whales. The values of eight visceral organs (stomach, intestine, liver, pancreas, lungs, kidney, spleen and heart) of the striped dolphin fall in the range of the corresponding values of eight species shown in Table 6. The values of liver or lungs on 4 species of Delphinidae are higher than the correspond-

STRIPED AND SPOTTED DOLPHINS

ing values of the sperm whale and baleen whales.

ACKNOWLEDGMENTS

Specimens were collected through the cooperation of the fishermen's unions at Kawana, Futo and Taiji. We are indebted to Mr. N. Oguro of the Oyster Research Institute, and Prof. R. Tatsukawa and Messrs. S. Tanabe and K. Honda of the Ehime University for their help to the dissecting samples and collecting the data. Our sincere thanks are due to Prof. M. Nishiwaki of the University of the Ryukyus and Dr. T. Kasuya of the Ocean Research Institute of Tokyo University for their kind advice during this study. This work was supported partly by the grant from the Ministry of Education (Project Number: 843056).

REFERENCES

- Bryden, M. M., 1972. Growth and development of marine mammals. pp. 1-79. In: R. J. Harrison (ed.) Functional Anatomy of Marine Mammals, I. Academic Press.
- GHR, M., and G. PILLERI. 1969. On the anatomy and biometry of Stenella styx Gray and Delphinus delphis L. (Cetacca, Delphinidae) of the Western Mediterranean. pp. 15–65. In: G. Pilleri (ed.) Investigation on Cetacea, I. Berne.
- HUXLEY, J. S., 1932. Problems of relative growth. Dial Press, New York, 276 pp.
- KASUYA, T., 1976. Reconsideration of life history parameters of the spotted and striped dolphins based on cemental layers. Sci. Rep. Whales Res. Inst., 28: 73-106.
- MITCHELL, E., 1970. Pigmentation pattern evolution in delphinid cetaceans: an essay in adaptive coloration. Canadian J. Zool. 48: 717-740.
- MIYAZAKI, N., 1977. Growth and reproduction of Stenella coeruleoalba off the Pacific coast of Japan. Sci. Rep. Whales Res. Inst., 29: 21-48.
- PERRIN, W. F., 1975. Variation of spotted and spinner porpoises (genus *Stenella*) of the eastern tropical Pacific and Hawaii. *Bull. Scripps Inst. Oceanogr., Univ. Calif.*, 206 pp.
- PERRIN, W. F., and E. L. ROBERTS, 1972. Organ weights of nonceptive porpoise (Stenella spp.). Bull. S. Calif. Acad. Sci. 71 (1): 19-32.
- PIRROT, P., and T. KAMIYA, 1975. Comparison of ontogenetic brain growth in marine and coastal dolphins. Growth., 39: 507-524.

57

APPENDIX TABLE 1. ORGAN WEIGHTS OF

Date of kil	ll Field no.	Body length (cm)	(1) Body weight (g)	Sex	Life stage or Reproductive condition	Age**	Brain (g) (%)
19 XII '78	3 23	19	114	ð	Fetus		2.8 (2.5)
19 XII '78	8 24	22	202	ే	Fetus	,	4.8 (2.4)
19 XII '78	3 25	25	164	ð	Fetus		2.7 (1.6)
19 XII '78	8 26	32	453	ే	Fetus		18 (4.0)
19 XII '78	3 21	44	1030	Ŷ	Fetus		32 (3.1)
19 XII '78	3 22	53	2000	Ŷ	Fetus		75 (3.8)
15 XII '78	s 5	64	3700	Ŷ	Fetus		146 (4.0)
6 XII '79	14	77	6860	Ŷ	Fetus		290 (4.2)
6 XII '79) 11	79	6780	రే	Fetus		310 (4.6)
6 XII '79	12	85	8550	Ŷ	Fetus		336 (3.9)
19 XII '78	3 27	91	7940	ð	Fetus		335 (4.2)
6 XII '79) 13	97	10150	Ŷ	Fetus		393 (3.9)
19 XII '78	28	97	9800	ð	Fetus		376 (3.8)
19 XII '78	3 29	100	11000	ð	Fetus		466 (4.2)
19 XII '78	3 12	123	26000	ð	Immature	0.21	640 (2.5)
6 XII '79) 3	124	23000	ð	Immature	0.22	579 (2.5)
19 XII '78	13	135	26700	ð	Immature	0.33	700 (2.6)
19 XII '78	s 14	215	106300	ð	Mature	8.5	1020 (1.0)
19 XII '78	15	223	116000	ð	Mature	11.5	880 (0.8)
19 XII '78	16	225	145000	3	Mature	16.5	920 (0.6)
19 XII '78	17	227	131500	ð	Mature	11.5	1030 (0.8)
19 XII '78	8 18	230	159700	ð	Mature	17.5	990 (0.6)
19 XII '78	: 19	238	160500	ð	Mature	16.5	960 (0.6)
19 XII '78	3 20	239	164800	5	Mature	36.5	890 (0.5)
6 XII '79) 1	105.5	16100	Ŷ	Immature	0.05	471 (2.9)
6 XII '79	2	117	18700	Ŷ	Immature	0.16	798 (4.3)
6 XII '79	4	133	29400	Ŷ	Immature	0.31	674 (2.3)
6 XII '79) 6	166	49100	ę	Immature	1.0	849 (1.7)
19 XII '78	8 2	177	60000	Ŷ	Immature	1.75	710 (1.2)
19 XII '78	3 3	203	96300	9	Immature	5.5	860 (0.9)
19 XII '78	4	204	87000	Ŷ	Immature	7.5	880 (1.0)
19 XII '78	3 5	212	109500	Ŷ	Lactating	17.5	1090 (1.0)
19 XII '78	8 6	218	122000	Ŷ	Resting	15.5	790 (0.7)
19 XII '78	3 7	218	130800	P	Lactating	34.5	890 (0.7)
6 XII '79) 7	221	138200*	Ŷ	Pregnant	9.5	942 (0.7)
6 XII '79	8	222	140250*	l A q ⊑A	Pregnant	19.5	851 (0.6)
19 XII '78	8 8	223	128000*	Ŷ	Pregnant	17.5	1010 (0.8)
6 XII '79) 9	223	144700*	ę	Pregnant	20.5	1100 (0.8)
19 XII '78	3 9	228	136800*	ę	Pregnant	18.5	730 (0.5)
6 XII '79) 10	229	153340*	ę	Pregnant	16.5	876 (0.6)
19 XII '78	10	232	153200*	Ŷ	Pregnant	25.5	980 (0.6)
19 XII '78	: 11	236	140000	Ŷ	Resting	18.5	920 (0.7)

* excluding fetus weight.

** determined from body length in the young animals of 177 cm or less, and from the number of den-*** including eyes, larynx, tongue, bladder and so on.

42 SPECIMENS OF STENELLA COERULEOALBA

(2) View (2)	(3)	(4)	(5)	(6) ***	(2)+(3)+(4) +(5)+(6)
(%)	(%)	Blubber (g)	Bone (g) $(%)$	Others (g) $(0/)$	(1)
(70)	(70)	(70)	(70)	(70)	×100
8.7 (7.6)	20.2 (17.7)	10.3 (9.0)	61.1 (53.4)	1.1 (1.0)	91.2
19.8 (9.8)	25.7 (12.7)	20.6 (10.2)	108 (53.4)	1.7 (0.8)	89.3
19.4 (11.8)	26.0 (15.9)	15.4 (9.4)	90 (54.9)	1.2(0.7)	94.3
57.8 (12.8)	(-225.3	(49.7)—)	104 (23.0)	6.2(1.4)	90.9
107 (10.4)	187 (18.2)	176 (17.1)	456 (44.3)	4.5(0.5)	93.6
307 (15.4)	335 (16.8)	309 (15.5)	860 (43.0)	15 (0.8)	95.3
551 (14.9)	975 (26.4)	694 (18.8)	632 (17.1)	178 (4.8)	85.9
883 (12.9)	2320 (33.8)	1820 (26.5)	1200 (17.5)	99 (1.4)	96.4
1180 (17.4)	1990 (29.4)	1720 (26.4)	1390 (20.5)	70 (1.0)	99.3
1390 (16.3)	2260 (26.4)	2430 (28.4)	1850 (21.6)	71 (0.8)	97.5
1194 (15.0)	1817 (22.9)	2504 (31.5)	1903 (24.0)	106 (1.3)	98.9
1890 (18.6)	2320 (22,9)	3320 (32.7)	1910 (18.8)	102 (1.0)	97.9
1368 (14.0)	2232 (22.8)	2720 (27.8)	2534 (25.9)	121 (1.2)	95.5
1225 (11.1)	2823 (25.7)	3213 (29.2)	2340 (21.3)	289 (2.6)	94.1
3030 (11.7)	9670 (37.2)	5910 (22.7)	5200 (20.0)	590 (2.3)	96.4
3260 (14.2)	9780 (42.5)	5530 (24.0)	2540 (11.0)	180 (0.8)	95.0
2700 (10.1)	8890 (33.3)	6680 (25.0)	6140 (23.0)	740 (2.8)	96.8
10960 (10.3)	57560 (54.1)	17400 (16.4)	16600 (15.6)	1550 (1.5)	97.9
11960 (10.3)	63890 (55,1)	19030 (16.4)	17300 (14.9)	1480 (1.3)	98.8
11300 (7.8)	78460 (54.1)	25810 (17.8)	19650 (13.6)	5790 (4.0)	97.9
11700 (8.9)	67940 (51.7)	25260 (19.2)	18200 (13.8)	4170 (3.2)	97.6
15560 (9.7)	90430 (56.6)	29510 (18.5)	17900 (11.2)	2970 (1.9)	98.5
14180 (8.8)	89180 (55.6)	27600 (17.2)	18910 (11.8)	7400 (4.6)	98.6
14350 (8.7)	91430 (55.5)	31390 (19.0)	18020 (10.9)	5170 (3.1)	97.7
1760 (10.9)	7050 (43.8)	3920 (24.3)	2010 (12.5)	115 (0.7)	95.1
2410 (12.9)	7770 (41.6)	4290 (22.9)	2780 (14.9)	176 (0.9)	97.5
4250 (14.5)	13800 (46.9)	6050 (20.6)	4230 (14.4)	427 (1.5)	100
5580 (11.4)	24100 (49.1)	11200 (22.8)	6120 (12.5)	935 (1.9)	99.4
6480 (10.8)	29930 (49.9)	10300 (17.2)	8520 (14.2)	1640 (2.7)	96.0
10400 (10.8)	47970 (49.8)	16560 (17.2)	13520 (14.0)	4330 (4.5)	97.2
8550 (9.8)	44540 (51.2)	15000 (17.2)	11670 (13.4)	3410 (3.9)	96,5
11680 (10.7)	58910 (53.8)	17090 (15.6)	14320 (13.1)	2360 (2.2)	96.4
11120 (9.1)	72910 (59.8)	19550 (16.0)	14100 (11.6)	1740 (1.4)	98,6
17180 (13.1)	68830 (52.6)	23590 (18.0)	15500 (11.9)	2110 (1.6)	98.0
18700 (13.5)	78300 (56.7)	24800 (17.9)	9800 (7,1)	3390 (2.5)	98.4
19800 (14.1)	77000 (54.9)	26500 (18.9)	11300 (8.1)	3010 (2.1)	98.7
14540 (11.4)	69580 (54.4)	19160 (15.0)	16500 (12.9)	3790 (3.0)	97.5
19800 (13.7)	78800 (54.5)	26100 (18.0)	12700 (8.8)	4470 (3.1)	98.9
12700 (9.3)	71600 (52.3)	19200 (14.0)	16600 (12.1)	10130 (7.4)	95.6
23400 (15.3)	85000 (55.4)	28200 (18.4)	12400 (8.1)	2730 (1.8)	99.6
15300 (10.0)	86000 (56.1)	27100 (17.7)	14800 (9.7)	7060 (4.6)	98.7
13490 (9.6)	77610 (55.4)	24480 (17.5)	16800 (12.0)	4290 (3.1)	98.3

tinal and/or cemental layers in the animals of 185 cm or more.

MIYAZAKI, FUJISE AND FUJIYAMA

APPENDIX TABLE 2. BODY LENGTH, BODY WEIGHT AND ORGAN

			Body	Body		Life stage				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date of kill	Field no.	length (cm)	weight (kg)	Sex	or Reproductive condition	Age**	Heart	Lungs	Liver
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19 XII '78	23	19	0.114	đ	Fetus	_	1.0	6.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19 XII '78	24	22	0.202	ð	Fetus		1.5	9.0	3.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19 XII '78	25	25	0.164	ే	Fetus		2.2	9.7	5.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19 XII '78	26	32	0.453	đ	Fetus		3.2	24	12
19 XII 78 22 53 2.00 \bigcirc Fetus 16.0 103 60 15 XII 79 5 64 3.70 \bigcirc Fetus 28.2 194.5 86.8 21 X 70 214 73 d Fetus 28.2 194.5 86.8 21 X 70 214 73 d Fetus 55 334 145 6 XII 79 14 76 6.86 \bigcirc Fetus 63 390 116 21 X 70 181 80 \bigcirc Fetus 126 432 311 19 XII 78 27 17.94 d Fetus 105 466 193 6 XII 79 30 96 10.0 \bigcirc Fetus 105 466 193 6 XII 78 28 97	19 XII '78	21	44	1.03	Ŷ	Fetus	_	8.3	44	22
15 XII 79 5 64 3,70 \wp Fetus 48.2 194.5 86.8 21 X 70 214 73 ς Fetus 44 250 158 6 XII 79 11 79 6.78 ς Fetus 55 334 145 6 XII 79 11 79 6.78 ς Fetus 63 390 116 21 X 70 181 80 ς Fetus 63 476 240 6 XII 79 12 85 8.55 ς Fetus 126 432 311 19 XII 78 27 91 7.94 ς Fetus 126 432 311 19 XII 78 28 97 9.8 ς Fetus 127 482 19 19 XII 78 13	19 XII '78	22	53	2.00	Ŷ	Fetus		16.0	103	60
21 X 70 214 73 $$ 3^{+} Fetus $$ 55 334 145 6 XII 79 14 77 6.86 φ Fetus ⁶ $$ 55 334 145 6 XII 79 14 77 6.78 \mathcal{F} Fetus $$ 63 390 116 21 X 70 181 80 $$ φ Fetus $$ 63 390 116 21 X 70 181 80 $$ φ Fetus $$ 63 390 116 21 X 70 218 85.8.5 φ Fetus $$ 126 432 311 9 XII 78 27 91 7.94 \mathcal{F} Fetus $$ 127 466 193 197 10.17 22 197 492 2197 197 487 666 117 482 219 197	15 XII '79	5	64	3.70	Ŷ	Fetus		28.2	194.5	86.8
6 XII 79 14 77 6.86 \mathcal{Q} Fetus ⁶ 55 334 145 6 XII 79 11 79 6.78 \mathcal{J} Fetus ⁶ 117 268 180 19 XII 78 31 79.5 4.63 \mathcal{J} Fetus ⁶ 44 276 128 21 X 70 181 80 \mathcal{Q} Fetus 63 390 116 21 X 70 181 80 \mathcal{Q} Fetus 68 476 240 6 XII 79 12 85 8.55 \mathcal{Q} Fetus 105 466 193 9 XII 78 20 96 10.0 \mathcal{Q} Fetus 105 466 193 9 XII 78 21 123 26.0 \mathcal{J} Immature 0.21 314 917 487 9 XII 78 13 135 26.7 \mathcal{J} Immature 0.33 210 566 410 13 X 70 64 141.	21 X '70	214	73	_	ð	Fetus		44	250	158
6 XII 77 11 79 6.78 3 Fetus ^a 117 268 180 19 XII 778 31 79,5 4.63 3 Fetus ^a 44 276 128 21 X 70 219 81 7.10 G Fetus 68 476 240 6 XII 79 12 85 8.55 Q Fetus 68 476 240 6 XII 79 13 97 10.15 Q Fetus 126 432 311 19 XII 78 23 97 9.8 d Fetus 169 507 202 19 XII 78 12 123 26.0 d Immature 0.22 237 876 542 19 XII 78 13 135 26.7 d Immature 0.38 210 586 410 13 X 70 E2 190 d Immature 3.5 600 1550 1500 13 X 70 E2 190	6 XII '79	14	77	6.86	Ŷ	Fetus ^e		55	334	145
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 XII '79	11	79	6.78	Ť.	Fetus ^a		117	268	180
1 N 0 0 - Q Fetus - 63 390 116 21 X '70 219 81 7.10 3 Fetus - 68 476 240 6 XII '79 12 85 8.55 Q Fetus - 126 432 311 19 XII '78 27 91 7.94 3 Fetus - 224 558 140 19 XII '79 30 96 10.0 Q Fetus - 105 466 193 6 XII '79 13 97 10.15 Q Fetus - 127 482 219 19 XII '78 12 123 26.0 d Immature 0.21 314 917 487 19 XII '78 13 135 26.7 d Immature 0.33 236 706 542 19 XII '70 842 192	19 vII '78	31	79.5	4.63	ð	Fetus ^e		44	276	128
21 X 70 219 81 7.10 d Fetus - 68 476 240 6 XII 79 12 85 8.55 9 Fetus ^b - 126 432 311 19 XII 78 27 91 7.94 \mathcal{G} Fetus ^b - 126 432 311 19 XII 78 27 91 7.94 \mathcal{G} Fetus ⁴ - 105 666 117 19 XII 78 28 97 9.8 \mathcal{S} Fetus - 127 482 219 19 XII 78 29 100 11.0 \mathcal{G} Fetus - 127 487 219 19 XII 78 13 135 26.7 \mathcal{J} Immature 0.33 236 706 542 19 XII 70 61 141.5 31.0 \mathcal{J} Immature 0.33 236 706 542 13 x70	21 X '70	181	80		Q Q	Fetus	<u> </u>	63	390	116
11 10 11 18 10 10 11 10 11 10 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 11 12 12 11 11 12 11 11 12 12 11 <t< td=""><td>21 X '70</td><td>219</td><td>81</td><td>7.10</td><td>+</td><td>Fetus</td><td></td><td>68</td><td>476</td><td>240</td></t<>	21 X '70	219	81	7.10	+	Fetus		68	476	240
19 XII 78 27 91 7.94 3 Fetus 224 558 140 19 XII 79 30 96 10.0 9 Fetus 105 466 193 6 XII 79 13 97 10.15 9 Fetus 169 507 202 19 XII 78 28 97 9.8 3 Fetus 169 507 202 19 XII 78 12 123 26.0 3 Immature 0.21 314 917 487 6 XII 79 3 124 23.0 3 Immature 0.33 226 706 369 2 XII 70 614 141.5 31.0 3 Immature 0.38 210 586 410 13 X 70 342 192 3 Immature 3.5 480 1000 1250 14 XII 71	6 XII '79	12	85	8.55	Ŷ	Fetus ^b	_	126	432	311
19 XII 79 30 96 10.0 9 Fetus ⁴ 105 466 193 6 XII 79 13 97 10.15 9 Fetus ⁴ 69.5 692 197 19 XII 78 28 97 9.8 3 Fetus 169 507 202 19 XII 78 29 100 11.0 3 Fetus 169 507 202 19 XII 78 12 23.2 26.0 3 Immature 0.22 237 876 542 19 XII 78 13 135 26.7 3 Immature 0.33 236 706 369 2 XII 70 614 141.5 31.0 4 Immature 3.3 236 706 369 2 XII 70 342 192 4 Immature 3.5 480 1000 1250 15 XII 7	19 XII '78	27	91	7.94	+ *	Fetus		224	558	140
A. M. 10 B. 10	19 XII '79	30	96	10.0	Q Q	Fetusf		105	466	193
19 XII 78 28 97 9.8 5 Fetus — 169 507 202 19 XII 78 29 100 11.0 5 Fetus — 127 482 219 19 XII 78 12 123 26.0 5 Immature 0.21 314 917 487 6 XII 79 3 124 23.0 5 Immature 0.22 237 876 542 19 XII 78 13 135 26.7 5 Immature 0.38 236 706 369 2 XII 70 E2 190 — 5 Immature 0.38 210 586 410 13 X 70 B42 192 — 5 Immature 3.5 480 1000 1250 14 XII 71 107 195 — 5 Immature 4.5 550 1200 1400 14 XII 71	6 XII '79	13	97	10.15	¢	Fetusd	_	69.5	692	197
10 XII 78 29 100 11.0 3 Fetus - 127 482 219 19 XII 78 12 123 26.0 3 Immature 0.21 314 917 487 6 XII 79 3 124 23.0 3 Immature 0.22 237 876 542 19 XII 78 13 135 26.7 3 Immature 0.33 236 706 369 2 XII 70 614 141.5 31.0 3 Immature 0.38 210 586 410 13 X 70 E2 190 3 Immature 3.5 480 1000 1250 25 XI 70 342 192 3 Immature 3.5 600 1500 1850 14 XII 71 107 195 3 Immature 4.5 550 1200 1400 14 XII	19 XII '78	28	97	9.8	+	Fetus	_	169	507	202
19 XII 78 12 123 26.0 \mathcal{C} Immature 0.21 314 917 487 6 XII 79 3 124 23.0 \mathcal{C} Immature 0.22 237 876 542 19 XII 78 13 135 26.7 \mathcal{C} Immature 0.33 236 706 369 2 XII 70 E2 190 \mathcal{C} \mathcal{C} Immature 0.38 210 586 410 13 X 70 E2 190 \mathcal{C} \mathcal{C} Immature 0.38 210 586 410 13 X 70 B2 192 \mathcal{C} \mathcal{C} Immature \mathcal{A} 3100 1250 14 XII 71 107 195 \mathcal{C} \mathcal{C} Immature 3.5 600 1500 1850 14 XII 71 197 \mathcal{C} Immature 4.5 550 1200 1400 14 XII	19 XII '78	29	100	11.0	3	Fetus		127	482	219
6 XII '79 3 124 23.0 3 Immature 0.22 237 876 542 19 XII '78 13 135 26.7 3 Immature 0.33 236 706 369 2 XII '70 614 141.5 31.0 3 Immature 0.38 210 586 410 13 X '70 E2 190 3 Immature 1300 1150 14 XII '71 110 190 3 Immature 435 1300 1050 15 X '70 342 192 3 Immature 435 1300 1050 14 XII '71 107 195 3 Immature 3.5 600 1500 1850 13 X '70 131 196 3 Immature 4.5 550 1200 1400 14 XII '71 11 197 3 Immature 4.5 550 1200 1400 14 XII '71 198 -	19 XII '78	12	123	26.0	. 2	Immature	0.21	314	917	487
19 XII 78 13 135 26.7 3 Immature 0.33 236 706 369 2 XII 70 614 141.5 31.0 3 Immature 0.38 210 586 410 13 X 70 E2 190 3 Immature 0.38 210 586 410 13 X 70 E2 190 3 Immature 0.38 210 586 410 14 XII 71 110 190 3 Immature 3.5 480 1000 1250 14 XII 71 107 195 3 Immature 3.5 600 1550 1500 13 X 70 131 196 3 Immature 4.5 500 1300 1300 1300 14 XII 71 3 197 3 Immature 4.5 500 1500 1500 1300	6 XII '79	3	124	23.0	3	Immature	0.22	237	876	542
2 XII 70 614 141.5 31.0 3 Immature 0.38 210 586 410 13 X 70 E2 190 3 Immature 1300 1150 14 XII 71 110 190 3 Immature 3.5 480 1000 1250 25 XI 70 342 192 3 Immature 435 1300 1050 14 XII 71 107 195 3 Immature 600 1500 1850 13 X 70 131 196 3 Immature 4.5 600 1300 1300 14 XII 71 111 197 3 Immature 4.5 550 1200 1400 14 XII 71 3 197 3 Immature 4.5 620 1620 1420 14 XII	19 XII '78	13	135	26.7	3	Immature	0.33	236	706	369
13 X '70 E2 190 - 3 Immature - - 1300 1150 14 XII '71 110 190 - 3 Immature 3.5 480 1000 1250 25 XI '70 342 192 - 3 Immature - 435 1300 1050 14 XII '71 107 195 - 3 Immature - 600 1500 1850 13 X '70 131 196 - 3 Immature 4.5 600 1300 1300 14 XII '71 29 197 - 3 Immature 4.5 550 1200 1400 14 XII '71 3 197 - 3 Immature 3.5 700 1550 1500 13 X '70 E5 198 - 3 Immature 4.5 620 1620 1420 14 XII '71 1 198 - 3 Immature 5.5 600 1400 1600 14 XII '71	2 XII '70	614	141.5	31.0	ð	Immature	0.38	210	586	410
14 XII 71 110 190 \vec{d} Immature 3.5 480 1000 1250 25 XI 70 342 192 \vec{d} Immature 435 1300 1050 14 XII 71 107 195 \vec{d} Immature 600 1550 1500 13 X 70 131 196 \vec{d} Immature 4.5 600 1300 1300 14 XII 71 29 197 \vec{d} Immature 4.5 550 1200 1400 14 XII 71 3 197 \vec{d} Immature 3.5 700 1550 1500 13 X 70 E.5 198 \vec{d} Immature 4.5 620 1620 1420 14 XII 71 1 198 \vec{d} Immature 5.5 600 1400 1600	13 X '70	E 2	190	_	ే	Immature			1300	1150
25 X1 70 342 192 $\vec{\sigma}$ Immature 435 1300 1050 14 X11 71 107 195 $\vec{\sigma}$ Immature 3.5 600 1550 1500 13 X 70 131 196 $\vec{\sigma}$ Immature 600 1500 1850 14 X11 71 29 197 $\vec{\sigma}$ Immature 4.5 600 1300 1300 14 X11 71 11 197 $\vec{\sigma}$ Immature 4.5 550 1200 1400 14 X11 71 3 197 $\vec{\sigma}$ Immature 3.5 700 1550 1500 13 X 70 E5 198 $\vec{\sigma}$ Immature 4.5 620 1620 1420 14 X11 71 147 198 $\vec{\sigma}$ Immature 5.5 600 1400 1600	14 XII '71	110	190		ð	Immature	3.5	480	1000	1250
14 XII 71 107 195 $ \vec{d}$ Immature 3.5 600 1550 1500 13 X 70 131 196 $ \vec{d}$ Immature $-$ 600 1500 1850 14 XII 71 29 197 $ \vec{d}$ Immature 4.5 600 1300 1300 14 XII 71 111 197 $ \vec{d}$ Immature 4.5 550 1200 1400 14 XII 71 3 197 $ \vec{d}$ Immature 3.5 700 1550 1500 13 X 70 E.5 198 $ \vec{d}$ Immature 3.5 620 1620 1420 14 XII 71 1 198 $ \vec{d}$ Immature 5.5 600 1400 1600 14 XII 71 112 204 $ \vec{d}$ Immature 5.5 550 1150 1250	25 XI '70	342	192		ð	Immature	_	435	1300	1050
13 X '70 131 196 3 Immature 600 1500 1850 14 XII '71 29 197 3 Immature 4.5 600 1300 1300 14 XII '71 111 197 3 Immature 4.5 550 1200 1400 14 XII '71 11 197 3 Immature 4.5 550 1200 1400 14 XII '71 3 197 3 Immature 3.5 700 1550 1500 13 X '70 E.5 198 3 Immature 4.5 620 1620 1420 14 XII '71 1 198 3 Immature 5.5 600 1400 1600 14 XII '71 114 200 3 Immature 5.5 550 1150 1600 14 XII </td <td>14 XII '71</td> <td>107</td> <td>195</td> <td>_</td> <td>ð</td> <td>Immature</td> <td>3.5</td> <td>600</td> <td>1550</td> <td>1500</td>	14 XII '71	107	195	_	ð	Immature	3.5	600	1550	1500
14XII 71 29197 δ Immature4.56001300130014XII 71 111197 δ Immature4.55501200140014XII 71 3197 δ Immature3.57001550150013X 70 E.5198 δ Immature1600130014XII 71 1198 δ Immature4.56201620142014XII 71 1198 δ Immature5.56001400160014XII 71 14200 δ Immature5.55501150160014XII 71 112204 δ Immature5.55501150160014XII 71 112204 δ Immature5.55501150160014XII 71 113208 δ Immature3.56201150125014XII 71 113208 δ Immature4.56801650205013X 70 E4212 δ Immature6501800210014XII 71 116214 δ Immature6.56001750	13 X '70	131	196		ð	Immature		600	1500	1850
14XII 71 111197 $ \delta$ Immature 4.5 550 1200140014XII 71 3197 $ \delta$ Immature 3.5 700 1550150013X 70 E5198 $ \delta$ Immature $ -$ 1600130014XII 71 1198 $ \delta$ Immature 4.5 6201620142014XII 71 1198 $ \delta$ Immature 5.5 6001400160014XII 71 14200 $ \delta$ Immature 5.5 6001400160014XII 71 114200 $ \delta$ Immature 5.5 5501150160014XII 71 112204 $ \delta$ Immature 5.5 5501150160014XII 71 113208 $ \delta$ Immature 3.5 6201150125014XII 71 113208 $ \delta$ Immature 4.5 6801650205013X 70 E4212 $ \delta$ Immature 6.5 6001750185019XII 78 14215106.3 δ Mature8.510002180175024X 70 222216 $ \delta$ Mature1	14 XII '71	29	197		ð	Immature	4.5	600	1300	1300
14 XII '71 3 197 $ \delta$ Immature 3.5 700 1550 1500 13 X '70 E 5 198 $ \delta$ Immature $ -$ 1600 1300 14 XII '71 1 198 $ \delta$ Immature 4.5 620 1620 1420 14 XII '71 1 198 $ \delta$ Immature 5.5 600 1400 1600 14 XII '71 114 200 $ \delta$ Immature 5.5 600 1400 1600 14 XII '71 112 204 $ \delta$ Immature 5.5 550 1150 1600 14 XII '71 112 204 $ \delta$ Immature 3.5 620 1150 1250 14 XII '71 113 208 $ \delta$ Immature 4.5 680 1650 2050 13 X '70 E4 212 $ \delta$ Immature 4.5 680 1650 2050 14 XII '71	14 XII '71	111	197		đ	Immature	4.5	550	1200	1400
13 X '70 E 5 198	14 XII '71	3	197	_	ð	Immature	3.5	700	1550	1500
14 XII '71 1 198 'Immature 4.5 620 1620 1420 14 XII '71 17 198 Immature 5.5 600 1400 1600 14 XII '71 114 200 Immature 5.5 600 1400 1600 14 XII '71 114 200	13 X '70	E 5	198	_	ð	Immature	_		1600	1300
14 XII '71 47 198	14 XII '71	1	198		ð	Immature	4.5	620	1620	1420
14 XII '71 114 200	14 XII '71	47	198		ð	Immature	5.5	600	1400	1600
14XII'71112204 $\square \square $	14 XII '71	114	200	신민达	Å	Immature	5.5	700	1500	1750
14XII7128206 $ \delta$ Immature3.56201150125014XII71113208 $ \delta$ Immature4.56801650205013X70E4212 $ \delta$ Immature $-$ 6501800210014XII71116214 $ \delta$ Immature $-$ 6501800210014XII71116214 $ \delta$ Immature6.56001750185019XII7814215106.3 δ Mature8.510002180175024X70222216 $ \delta$ Mature11.511602106170019XII7815223116 δ Mature11.511602106170019XII7816225145 δ Mature16.510501936235019XII7817227133.5 δ Mature11.5106020581600	14 XII '71	112	204	STITLITE		Immature	5.5	550	1150	1600
14XII71113208 $ \delta$ Immature4.56801650205013X'70E4212 $ \delta$ Immature $-$ 6501800210014XII'71116214 $ \delta$ Immature6.56001750185019XII'7814215106.3 δ Mature8.510002180175024X'70222216 $ \delta$ Mature11.511602106170019XII'7815223116 δ Mature11.511602106170019XII'7816225145 δ Mature16.510501936235019XII'7817227133.5 δ Mature11.5106020581600	14 XII '71	28	206		ۍ ځ	Immature	3.5	620	1150	1250
13X'70E4212 $ \delta$ Immature $-$ 6501800210014XII'71116214 $ \delta$ Immature6.56001750185019XII'7814215106.3 δ Mature8.510002180175024X'70222216 $ \delta$ Mature $-$ 2100190019XII'7815223116 δ Mature11.511602106170019XII'7816225145 δ Mature16.510501936235019XII'7817227133.5 δ Mature11.5106020581600	14 XII '71	113	208	<u> </u>	· 3	Immature	4.5	680	1650	2050
14XII?71116214 $ \delta$ Immature6.56001750185019XII?7814215106.3 δ Mature8.510002180175024X?70222216 $ \delta$ Mature $-$ 2100190019XII?7815223116 δ Mature11.511602106170019XII?7816225145 δ Mature16.510501936235019XII?7817227133.5 δ Mature11.5106020581600	13 X '70	E 4	212		- đ	Immature		650	1800	2100
19XII '7814215106.3 \mathcal{J} Mature8.510002180175024X '70222216 \mathcal{J} Mature2100190019XII '7815223116 \mathcal{J} Mature11.511602106170019XII '7816225145 \mathcal{J} Mature16.510501936235019XII '7817227133.5 \mathcal{J} Mature11.5106020581600	14 XII '71	116	214		ð	Immature	6.5	600	1750	1850
24 X'70222216 $ \delta$ Mature $ 2100$ 190019 XII'7815223116 δ Mature11.511602106170019 XII'7816225145 δ Mature16.510501936235019 XII'7817227133.5 δ Mature11.5106020581600	19 XII '78	14	215	106.3	2	Mature	8.5	1000	2180	1750
19 XII '78 15 223 116 3 Mature 11.5 1160 2106 1700 19 XII '78 16 225 145 3 Mature 16.5 1050 1936 2350 19 XII '78 17 227 133.5 3 Mature 11.5 1060 2058 1600	24 X '70	222	216		2	Mature			2100	1900
19XII '7816225145 3° Mature16.510501936235019XII '7817227133.5 3° Mature11.5106020581600	19 XII '78	15	223	116	ں ج	Mature	11.5	1160	2106	1700
19 XII '78 17 227 133.5 ^A Mature 11.5 1060 2058 1600	19 XII '78	16	225	145	ر ج	Mature	16.5	1050	1936	2350
	19 XII '78	17	227	133.5	ð	Mature	11.5	1060	2058	1600

WEIGHTS OF 82 SPECIMENS OF STENELLA COERULEOALBA

·	Weight	s of interi	ial organ	s (g)						Intestine
Kie	lney	Pan-		Stor	nach		Intes-	Splean	Brain (g)	length
left	right	creas	I	II	111	IV	tine	opicen		(cm)
0.4	0.3	_	_	_			—		2.8	
1.8	1.3	_	0.3	0.2			1.9		4.8	
0.5	0.6	—	<u> </u>				1.2	<u> </u>	2.7	
2.6	2.8		(1	.9	——)	4.3		18	
5.1	5.1		1.4	1.8	_		11	0.4	32	
13	13	—	4.1	3.0			23		75	
26.4	27.2	5.4	7.0	4.5	2.4	0.9	45.9	0.7	145.7	397
40	40	_	8.7	6.3	(—6	5.0—)	116	1.8	310	—
28.7	29.8	-	12.5	8.5	3.1	2.6	112	2.8	289.7	580
37.8	35.2	10.3	12.0	7.5	2.4	1.1	131	1.9	309.9	595
32	34	3.2	9.2	7.3	2.7	0.6	73	2.2	—	425
30	32	5.0	11.8	11.0	(—3	3.2—)	160	5.0	280	_
45	44	6.0	12.2	9.4	(-2)	2.4)	194	8.0	355	
37.3	37.6	18.9	15.5	8.5	3.2	2.6	159	2.5	335.9	603
30	30	1.8	13	8.1	3.9	2.1	122	5.3	335	
43	45	17	17	12	7.4	3.0	195	8.0	—	780
40.3	39.5		16.6	14.2	3.4	2.7	233	2.3	393.2	835
34	34	-	13	15	3.4	1.6	210	5.5	376	
40	39	5.3	12	11	6.0	1.7		3.8	466	
53	59	2.9	33	34	20	6.9	475	25	643	—
54.9	52.1	49.4	29.3	31.2	9.3	8.8	485	12.3	579.4	1190
57	62	24	144	132	121	11	623	30	699	
65	65	28.6	60	50	42	13.3	850	19.2	—	1200
250	250	300	(5		——)	2200	150	—	— .
	—	98.3	226.5	156.7	86	27	2200		—	
145	140	85	225	140	43.3	29	1750	42.5		1310
-	<u> </u>	112.3	267.6	190.9	61.9	41.9	2950	21.4	—	—
180	—	150	(6	50)	2900	60		
164.6	174.1	116	281.8	192.7	76.7	45.8	2800	25.2		
250	250	131.7	400	250	85.8	25.5	3100	28.0		<u> </u>
191.4	198.2	155.2	343.4	190.7	80	35.4	2150	43		
		158	(7(00	——)	2600	54		
201.6	217.0	148.5	286.6	190.6	87.4	35.5	2950	34.2		
247.3	217.3	163.8	413.1	201	69	33.3	2900	35.5	-	
250	250	128.7	500	300	69.7	△32.4 =	2650	26.0		
250	250	105.2	350	250	48.8	17	2750	21.6	—	
161.3	163.5	88.6	285.4	186.8	93.2	33.3	2500	31.5	—	
269.1	279.4	155.8	358.4	234.6	71	35	3050	30.8	_	
302	298	300	(9		—_)	3100	44	_	
		168.8	437.2	220.8	55.8	34.8	2850	55.4		
235	250	143	466	282	57	47	2720	43	1024	1025
		180	600	250	120	70	2820	110		1835
447	408	151	458	310	56	38	2360	12	881	_
331	317	106	571	220	120	23	2260	37	922	
309	303	205	580	282	70	62	2870	36	1031	1900

Weights of internal organs (g)

Continued...

APPENDIX TABLE 2.

				Body	Body		Life stage				
Ι	Date (kill	of	Field no.	length (cm)	weight (kg)	Sex	or Reproductive condition	Age**	Heart	Lungs	Liver
13	х	' 70	130	228		đ	Mature		850	2100	1600
13	х	' 70	135	230		ನೆ	Mature		800	2150	2500
19	XП	' 78	18	230	159.7	నే	Mature	17.5	1380	2920	2150
19	XII	' 78	19	238	160.5	ð	Mature	16.5	1280	2800	2000
19	\mathbf{XII}	' 78	20	239	164.8	ే	Mature	36,5	1580	2081	2050
6	XII	' 79	1	105.5	16.1	Ŷ	Immature	0.05	130	491	260
6	XII	' 79	2	117	18.7	Ŷ	Immature	0.16	208	715	463
2	XII	' 70	613	125.5	23.0	ç	Immature	0.24	165	470	330
6	хп	'79	4	133	29.4	Ŷ	Immature	0.31	302	1304	809
25	XI	' 70	344	162		Ŷ	Immature	0.68	325	1050	780
6	$\mathbf{X}\mathbf{H}$	' 79	6	166	49.1	Ŷ	Immature	1.0	410	790	667
19	$\mathbf{X}\mathbf{I}\mathbf{I}$	'78	1	175	57.0	ę	Immature	1.58	340	1153	852
19	XII	'78	2	177	60.0	Ŷ	Immature	1.75	627	877	1010
14	XI	'71	2	185	64.0	₽	Immature	3.5	520	1150	1580
25	\mathbf{XI}	'70	339	188	66.0	Ŷ	Immature	-	420	1100	1250
25	XI	' 70	340	190	77.0	ę	Immature		725	1800	1750
13	х	'70	E 3	197	-	£	Immature			1200	1700
10	$\mathbf{X}\mathbf{H}$	'70	616	199	77.9	ę	Immature		430	2350	1750
19	$\mathbf{X}\mathbf{H}$	'78	3	203	96.3	Ŷ	Immature	5.5	732	1489	1530
19	$\mathbf{X}\mathbf{I}\mathbf{I}$	'78	4	204	87.0	Ŷ	Immature	7.5	734	1443	1500
13	х	' 70	E1	205	_	Ŷ	Immature			2400	1500
2	$\mathbf{X}\mathbf{I}\mathbf{I}$	'70	651	210	95.0	Ŷ	Immature		610	1330	1430
19	$\mathbf{X}\mathbf{H}$	'78	5	212	109.5	ę	Lactating	17.5	683	1902	1650
19	$\mathbf{X}\mathbf{H}$	'78	7	218	130.8	ę	Lactating	34.5	1500	3070	2900
19	XII	'78	6	218	122	ę	Resting	15.5	778	2030	1670
6	$\mathbf{X}\mathbf{H}$	' 79	7	221	138.2*	ę	Pregnant ^a	9.5	2050	3600	2940
6	XII	' 79	8	222	140.2*	Ŷ.	Pregnant ^b	19.5	1970	4060	2760
19	$\mathbf{X}\mathbf{H}$	'78	8	223	128.4*	Ŷ	Pregnant ^c	17.5	1310	2460	2170
6	$\mathbf{X}\mathbf{H}$	'79	9	223	144.7*	Ŷ	Pregnant ^d	20.5	2100	3910	2950
25	XI	'70	345	226	119.8*	ę	Pregnant	_	650	2500	2150
25	XI	' 70	343	228	116.2*	Ŷ	Pregnant	_	615	3200	1950
19	$\mathbf{X}\mathbf{I}\mathbf{I}$	'78	9	228	136.8*	₽ ₽	Pregnant	18.5	934	1722	1900
6	XII	' 79	10	229	153.3*	Ŷ	Pregnant ^e	16.5	2330	4680	4510
25	XI	' 70	346	230	114.9*	Ŷ	Pregnant	지다 국민	910	2200	2050
19	XII	' 78	10	232	153.2*	Ŷ	Pregnant ^f	25.5	1020	2148	2130
25	XI	'70	341	232	126.4	Оç	Mature	ESE <u>A</u> R(760	2000	2250
19	XII	'78	11	236	140	우	Resting	18.5	1350	2750	2400

Fetuses a, b, c, d, e, f were obtained from pregnant females a, b, c, d, e, f respectively. * excluding fetus weight.

STRIPED AND SPOTTED DOLPHINS

Continued.

	Weights of internal organs (g)										
Kid	lney	Pan-		Sto	mach		Intes-		Brain (g)	length	
left	right	creas	1	II	III	IV	tine	Spleen	(0)	(cm)	
308	~	190	(10	0000	——)	3000	50			
312	358	177	(800)́	3500	58			
348	356	132	650	314	179	54	3200	35	992	2110	
419	402	165	685	302	142	63	3100	70	962	_	
464	396	195	813	375	126	50	2900	76	866		
37.8	41.1	20.7	18.4	26.4	10.8	5.8	347	13.5	471.2	941	
44.1	44.3	26.4	33.6	30.1	13.0	9.1	408	9,4	797.5	1015	
52.4	50.4	16.6	28.2	27.7	22.9	4.1	470	12.1			
66.2	67.2	88.7	50.6	46.4	14.4	10.3	758	9.7	673.7	1200	
100		65	118	90	33.2	33	1200	28.2		1254	
94.1	93.1	144	148	99.1	69.3	57,1	1680	9.3	848.6	1492	
115	118	40	156	123	48	27		17	784		
203	135	66	200	112	44	28	1900	37	709		
220	220	99.7	288.1	159.5	53.9	30.4	2550	30.2			
125	150	80	235	115	45	31,2	1750	32,2		1487	
		115	410	210	75	40.4	2600	41.9		1890	
134	158	160	(60)00	—)	2200	40		_	
210	200	120	550	165	48	40	2650	21.4			
212	234	126	405	210	70	64	3000	26	856	1787	
174	159	104	363	176	49	33	2000	8.2	884	1580	
205	194	108	(60)00)	2500	31			
225	240	110					2155	17		1988	
271	264	163	534	251	90	40	2950	13	1086	1900	
471	465	164	703	310	74	51	3200	29	887	1900	
216	155	164	491	246	74	48	2620	26	788	1820	
372	344		551	264	86.6	145	2910	28	942.1	1952	
417	413		595	306	194	96.6	3690	20.6	851	1687	
307	321	168	578	355	85	60	2020	28	1005	2017	
387	415		744	323	181	107	3010	69.8	1099	1900	
250	240	160	490	250	70	37.3	2650	17.8		2212	
		82	355	260	65	42	2200	29		1692	
291	287	166	531	319	84	92	2950	33.7	731	2325	
475	502	<u> </u>	709	354	98.9	116	4040	53.2	875.7	2302	
240	250	115	525	240	52	37.8	2400	35.4		2150	
348	313	102	549	264	87 - 6	47	3200	33	977	2300	
250	265	180	540	318	95	50	3050	30.9		2208	
326	391	200	704	291	98	81	3200	24	917	·	

** determined from body length in the young animals of 177 cm or less, and from the number of dentinal and/or cemental layers in the animals of 185 cm or more.

MIYAZAKI, FUJISE AND FUJIYAMA

APPENDIX TABLE 3. BODY LENGTH, BODY WEIGHT AND ORGAN

10 XI 70 362 114 15.6 d' Immature	Date of kill	Field no.	Body length (cm)	Body weight (kg)	Sex	Life stage or Reproductive condition	Heart	Lungs	Liver
6 XI 70 167 115 — J Immature 86 320 297 10 XI 70 360 117 16.0 J Immature 75 335 630 10 XI 70 364 123 15.6 J Immature 100 400 570 10 XI 70 364 123 15.8 J Immature 100 400 570 10 XI 70 368 149 24.8 J Immature 160 550 540 10 XI 70 368 149 24.8 J Immature 170 600 1125 10 XI 70 362 167 54.0 J Immature 350 1300 1220 10 XI 70 244 184	10 XI '70	362	114	15.6	đ	Immature		310	410
10 XI 70 360 117 16.0 J Immature 75 335 630 10 XI 70 359 119 15.6 J Immature 100 400 570 10 XI 70 355 122 17.2 J Immature 100 400 570 10 XI 70 355 122 17.2 J Immature 106 400 570 10 XI 70 368 149 24.8 J Immature 106 550 540 10 XI 70 393 151 34.7 J Immature 170 660 1125 10 XI 70 347 165 39.8 J Immature 205 1300 1220 10 XI 70 352 167 54.0 J Immature 300 1500 1270 2X 70 2 193 75.7 J Mature 300 1500 1270 2X 70 33 116	6 XI '70	167	115		ۍ ځ	Immature	86	320	297
10 XI 70 399 119 15.6 d Immature 105 390 375 10 XI 70 364 123 15.8 d Immature 100 400 570 10 XI 70 355 122 17.2 d Immature 110 440 660 6 XI 70 368 149 24.8 d Immature 106 400 500 10 XI 70 386 149 24.8 d Immature 170 660 1125 10 XI 70 347 165 39.8 d Immature 235 1300 1220 10 XI 70 342 167 54.0 d Immature 235 1300 1220 10 XI 70 289 198 80.3 d Mature 340 1120 1150 10 XI 70 361 117 12.6 Q Immature 300 370 151 2X 70 32 148 -	10 XI '70	360	117	16.0	ð	Immature	75	335	630
10 XI 70 364 123 15.8 d Immature 100 400 570 10 XI 70 355 122 17.2 d Immature 115 440 660 6 XI 70 368 149 24.8 d Immature 160 550 540 10 XI 70 368 149 24.8 d Immature 170 60 1125 10 XI 70 381 165 39.8 d Immature 245 900 920 10 XI 70 48 165	10 XI '70	359	119	15.6	ð	Immature	105	390	375
10 XI. 70 355 122 17.2 3 Immature 115 440 660 6 XI. 70 368 149 24.8 3 Immature 106 550 540 10 XI. 70 393 151 34.7 3 Immature 170 660 1125 10 XI. 70 347 165 39.8 3 Immature 24.9 900 920 10 XI. 70 347 165 39.8 3 Immature 230 1300 1220 10 XI. 70 48 165 4 Immature 230 1300 1320 6 XI. 70 171 173 4 Immature 300 1320 120 10 XI. 70 289 198 80.3 4 Mature 390 1370 1780 10 XI. 70 361 117 12.6 2 Immature 100 340 510 10 XI. 70 354 123 1	10 XI '70	364	123	15.8	ే	Immature	100	400	570
6 XI 70 128 $$ d Immature 106 400 500 10 XI 70 368 149 24.8 d Immature 160 550 540 10 XI 70 393 151 34.7 d Immature 120 660 1125 10 XI 70 347 165 39.8 d Immature 220 100 120 1220 10 XI 70 352 167 54.0 d Immature 230 1300 1320 6 XI 70 21 133 75.7 d Mature 340 1120 1150 10 XI 70 228 209 d Mature 340 1120 1150 10 XI 70 321 116 φ Immature 80 320 450 10 XI 70 32 118 φ Immature 100 <td< td=""><td>10 XI '70</td><td>355</td><td>122</td><td>17.2</td><td>ð</td><td>Immature</td><td>115</td><td>440</td><td>660</td></td<>	10 XI '70	355	122	17.2	ð	Immature	115	440	660
10 XI 70 368 149 24.8 3 Immature 160 550 540 10 XI 70 393 151 34.7 3 Immature 170 660 1125 10 XI 70 347 165 39.8 3 Immature 245 900 920 10 XI 70 352 167 54.0 3 Immature 350 1300 1320 10 XI 70 352 167 54.0 3 Immature 300 1500 1270 22 X 70 2 193 75.7 3 Mature 340 - - - 10 XI 70 389 198 80.3 3 Mature 340 120 1150 10 XI 70 361 117 12.6 Q Immature 100 340 510 22 X 70 354 123 17.1 Q Immature 100 <td< td=""><td>6 XI '70</td><td>170</td><td>128</td><td>_</td><td>ð</td><td>Immature</td><td>106</td><td>400</td><td>500</td></td<>	6 XI '70	170	128	_	ð	Immature	106	400	500
10 XI 70 93 151 34.7 3 Immature 170 660 1125 10 XI 70 347 165 39.8 3 Immature 245 900 920 10 XI 70 342 165 54.0 Immature 250 1300 1320 6 XI 70 171 173 3 Immature 350 1300 1320 10 XI 70 24 184 3 Immature 300 1500 1270 22 X 70 2 193 75.7 3 Mature 340 2 170 1780 110 1170 120 1150 10 XI 70 33 116 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 340 510 22 X 70 32 117 120	10 XI '70	368	149	24.8	ð	Immature	160	550	540
10 XI 70 347 165 39.8 3 Immature 245 900 920 10 XI 70 352 167 54.0 J Immature 250 1300 1220 10 XI 70 352 167 54.0 J Immature 350 1300 1220 10 XI 70 244 184 J Immature 300 1500 1270 22 x 70 2 193 75.7 J Mature 340 1120 1150 10 XI 70 228 209 J Mature 340 1120 1150 10 XI 70 361 117 12.6 Q Immature 100 340 510 22 x 70 32 118 Q Immature 100 440 350 10 XI 70 354 123 17.1 Q Immature 100 440	10 XI '70	393	151	34.7	ð	Immature	170	660	1125
10 XI 70 48 165	10 XI '70	347	165	39.8	ð	Immature	245	900	920
10 XI 70 352 167 54.0 d Immature 350 1300 1320 6 XI 70 171 173 d Immature 235 1200 1230 10 XI 70 244 184 d Immature 300 1500 1270 22 X 70 289 198 80.3 d Mature 340 1120 1150 10 XI 70 228 209 d Mature 340 22 X 70 32 116 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 440 4510 22 X 70 354 123 17.1 Q Immature 100 440 435 22 X 70 358 123 14.8 Q Immature 100 440 435 <td>10 XI '70</td> <td>48</td> <td>165</td> <td></td> <td>ð</td> <td>Immature</td> <td>220</td> <td>1300</td> <td>1220</td>	10 XI '70	48	165		ð	Immature	220	1300	1220
6 XI 70 171 173 d Immature 235 1200 1230 10 XI 70 244 184 d Immature 300 1500 1270 22 X 70 2 193 75.7 d Mature 340 1120 1150 10 XI 70 228 209 d Mature 340 22 X 70 33 116 Q Immature 80 320 450 10 XI 70 361 117 12.6 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 420 380 10 XI 70 354 123 17.1 Q Immature 100 440 435 22 X 70 42 130 16.9 Immature 100 440 435 22 X 70 42 130 <t< td=""><td>10 XI '70</td><td>352</td><td>167</td><td>54.0</td><td>ð</td><td>Immature</td><td>350</td><td>1300</td><td>1320</td></t<>	10 XI '70	352	167	54.0	ð	Immature	350	1300	1320
10 XI 70 244 184 3 Immature 300 1500 1270 22 X 70 2 193 75.7 3 Mature 340 1120 1150 10 XI 70 389 198 80.3 3 Mature 340 1120 1150 10 XI 70 33 116 Q Immature 80 320 450 10 XI 70 361 117 12.6 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 340 510 22 X 70 47 120 Q Immature 100 370 1515 10 XI 70 358 123 14.8 Q Immature 100 370 500 10 XI 70 357 130 16.9 Q Immature 100 440 435<	6 XI '70	171	173		ð	Immature	235	1200	1230
22 X 70 2 193 75.7 3 Mature 390 1370 1780 10 XI 70 389 198 80.3 3 Mature 340 1120 1150 10 XI 70 228 209 — 3 Mature 340 1120 1150 10 XI 70 33 116 — Q Inmature 800 320 450 10 XI 70 32 118 — Q Inmature 100 340 510 22 X 70 32 118 — Q Inmature 100 340 510 22 X 70 32 118 — Q Inmature 100 420 380 10 XI 70 354 123 17.1 Q Inmature 100 370 515 10 XI 70 357 130 16.9 Q Inmature 100 440 435 </td <td>10 XI '70</td> <td>244</td> <td>184</td> <td></td> <td>ð</td> <td>Immature</td> <td>300</td> <td>1500</td> <td>1270</td>	10 XI '70	244	184		ð	Immature	300	1500	1270
10 XI 70 389 198 80.3 3 Mature 340 1120 1150 10 XI 70 228 209 3 Mature 340 22 X 70 33 116 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 440 510 22 X 70 354 123 17.1 Q Immature 100 370 515 10 XI 70 354 123 14.8 Q Immature 100 440 435 22 X 70 42 130 19.6 Q Immature 110 500 560 22 X 70 312 165 35.0 Q Immature 120 100 820	22 X '70	2	193	75.7	ð	Mature	390	1370	1780
10 XI 70 228 209 $-$ 3 Mature 340 $ -$ 22 X 70 33 116 $-$ 9 Immature 80 320 450 10 XI 70 361 117 12.6 9 Immature 100 340 510 22 X 70 32 118 $-$ 9 Immature 100 340 301 22 X 70 354 123 17.1 9 Immature 100 420 380 10 XI 70 354 123 14.8 9 Immature 100 440 435 22 X 70 42 130 19.6 9 Immature 100 440 435 22 X 70 312 165 35.0 9 Immature 100 440 435 10 XI 70 312 165 35.0 9 Immature 200 200 1000<	10 XI '70	389	198	80.3	ð	Mature	340	1120	1150
22 X 70 33 116 Q Immature 80 320 450 10 XI 70 361 117 12.6 Q Immature 100 340 510 22 X 70 32 118 Q Immature 100 340 510 22 X 70 47 120 Q Immature 100 420 380 10 XI 70 354 123 14.8 Q Immature 90 500 10 XI 70 357 130 16.9 Q Immature 100 440 435 22 X 70 42 130 19.6 Q Immature 100 440 435 22 X 70 34 155 Q Immature 100 820 100 1030 10 XI 70 312 165 35.0 Q Immature 220 1000 820	10 XI '70	228	209	_	ð	Mature	340		
10 XI 70 361 117 12.6 \mathcal{Q} Immature 100 340 510 22 X 70 32 118 \mathcal{Q} Immature 170 730 1040 22 X 70 47 120 \mathcal{Q} Immature 100 420 380 10 XI 70 354 123 17.1 \mathcal{Q} Immature 100 370 515 10 XI 70 358 123 14.8 \mathcal{Q} Immature 100 440 435 22 X 70 42 130 19.6 \mathcal{Q} Immature 100 440 435 22 X 70 34 155 \mathcal{Q} Immature 100 200 1030 10 XI 70 312 165 35.0 \mathcal{Q} Immature 205 980 950 10 XI 70 509 167 36.6 \mathcal{Q} Immature	22 X '70	33	116		Ŷ	Immature	80	320	450
22 X 70 32 118 \mathcal{Q} Immature 170 730 1040 22 X 70 47 120 \mathcal{Q} Immature 100 420 380 10 XI 70 354 123 17.1 \mathcal{Q} Immature 100 370 515 10 XI 70 357 130 16.9 \mathcal{Q} Immature 90 300 500 10 XI 70 357 130 16.9 \mathcal{Q} Immature 100 440 435 22 X 70 42 130 19.6 \mathcal{Q} Immature 100 440 435 22 X 70 34 155 \mathcal{Q} Immature 102 000 1030 10 XI 70 312 164 \mathcal{Q} Immature 200 1030 10 XI 70 509 167 36.6 \mathcal{Q} Immature 205 980 950 10 XI 70 236 179 <td< td=""><td>10 XI '70</td><td>361</td><td>117</td><td>12.6</td><td>Ŷ</td><td>Immature</td><td>100</td><td>340</td><td>510</td></td<>	10 XI '70	361	117	12.6	Ŷ	Immature	100	340	510
22X7047120 $ \bigcirc$ Immature10042038010XI7035412317.1 \bigcirc Immature10037051510XI7035812314.8 \bigcirc Immature9030050010XI7035713016.9 \bigcirc Immature10044043522X704213019.6 \bigcirc Immature11050056022X7034155 \bigcirc Immature19266084010XI70312164 \bigcirc Immature19266084010XI7031216535.0 \bigcirc Immature200100082010XI7050916736.6 \bigcirc Immature2059809506XI70169168 \bigcirc Immature2501280100010XI70236179 \bigcirc Immature3501350163010XI7028018153.8 \bigcirc Immature3201200130022X706518453.0* \bigcirc Pregnant280950119010XI7028218970.1 \bigcirc Mature-1550170010XI70<	22 X '70	32	118		Ŷ	Immature	170	730	1040
10XI7035412317.1 \bigcirc Immature10037051510XI7035812314.8 \bigcirc Immature10037051510XI7035713016.9 \bigcirc Immature10044043522X704213019.6 \bigcirc Immature11050056022X7034155 \bigcirc Immature19266084010XI70232164 \bigcirc Immature19266084010XI7031216535.0 \bigcirc Immature200200103010XI7031216535.0 \bigcirc Immature20598095010XI7050916736.6 \bigcirc Immature20598095010XI7037017850.9 \bigcirc Immature2501280100010XI7028018153.8 \bigcirc Immature3001200130022X706518453.0* \bigcirc Pregnant280950119010XI7028218970.1 \bigcirc Mature3201200165010XI7028218970.1 \bigcirc Mature3001150165010XI <td>22 X '70</td> <td>47</td> <td>120</td> <td></td> <td>Q.</td> <td>Immature</td> <td>100</td> <td>420</td> <td>380</td>	22 X '70	47	120		Q.	Immature	100	420	380
10XI7035812314.8 \bigcirc Immature9030050010XI7035713016.9 \bigcirc Immature10044043522X704213019.6 \bigcirc Immature11050056022X7034155 \bigcirc Immature100200103010XI70232164 \bigcirc Immature19266084010XI7031216535.0 \bigcirc Immature200100082010XI7050916736.6 \bigcirc Immature2059809506XI70169168 \bigcirc Immature2051350163010XI7037017850.9 \bigcirc Immature3501350163010XI70236179 \bigcirc Immature3001200130022X706518453.0* \bigcirc Pregnant280950119010XI7028218970.1 \bigcirc Mature3201200165010XI7024519053.2 \bigcirc Mature28097085022X702519057.1 \bigcirc Lactating310106013706XI <td< td=""><td>10 XI '70</td><td>354</td><td>123</td><td>17.1</td><td>Ŷ</td><td>Immature</td><td>100</td><td>370</td><td>515</td></td<>	10 XI '70	354	123	17.1	Ŷ	Immature	100	370	515
10XI7035713016.9 \bigcirc Immature10044043522X704213019.6 \bigcirc Immature11050056022X7034155 \bigcirc Immature11050056022X7034155 \bigcirc Immature200200103010XI70232164 \bigcirc Immature19266084010XI7031216535.0 \bigcirc Immature220100082010XI7050916736.6 \bigcirc Immature2059809506XI70169168 \bigcirc Immature2501350163010XI70236179 \bigcirc Immature3501350163010XI70236179 \bigcirc Immature3001200130022X706518453.0* \bigcirc Pregnant280950119010XI70242188 \bigcirc Mature3201200165010XI7024519053.2 \bigcirc Mature28097085022X702519057.1 \bigcirc Lactating3101660137010XI70 <td>10 XI '70</td> <td>358</td> <td>123</td> <td>14.8</td> <td>ç</td> <td>Immature</td> <td>90</td> <td>300</td> <td>500</td>	10 XI '70	358	123	14.8	ç	Immature	90	300	500
22X704213019.6 \bigcirc Immature11050056022X7034155 \bigcirc Immature200200103010XI70232164 \bigcirc Immature19266084010XI7031216535.0 \bigcirc Immature19266084010XI7031216535.0 \bigcirc Immature220100082010XI7050916736.6 \bigcirc Immature2059809506XI70169168 \bigcirc Immature269930125010XI7037017850.9 \bigcirc Immature3501350163010XI70236179 \bigcirc Immature2501280100010XI7028018153.8 \bigcirc Immature3001200130022X706518453.0* \bigcirc Pregnant280950119010XI70242188 \bigcirc Mature3201200165010XI7024519053.2 \bigcirc Mature28097085022X702519057.1 \bigcirc Lactating310106013706XI <td< td=""><td>10 XI '70</td><td>357</td><td>130</td><td>16.9</td><td>Ŷ</td><td>Immature</td><td>100</td><td>440</td><td>435</td></td<>	10 XI '70	357	130	16.9	Ŷ	Immature	100	440	435
1111 <	22 X '70	42	130	19.6	Ŷ	Immature	110	500	560
10XI70232164 \mathcal{Q} Immature19266084010XI7031216535.0 \mathcal{Q} Immature220100082010XI7050916736.6 \mathcal{Q} Immature2059809506XI70169168 \mathcal{Q} Immature269930125010XI7037017850.9 \mathcal{Q} Immature3501350163010XI70236179 \mathcal{Q} Immature3001200130010XI70236179 \mathcal{Q} Immature3001200130010XI7028018153.8 \mathcal{Q} Immature3001200130010XI70242188 \mathcal{Q} Mature3201200165010XI70242188 \mathcal{Q} Mature3201200165010XI7024519053.2 \mathcal{Q} Mature28097085022X702519057.1 \mathcal{Q} Lactating310106013706XI70165193 \mathcal{Q} Mature3601150165010XI7025019361.8 \mathcal{Q} Mature3601050	22 X '70	34	155	<u> </u>	$\dot{\mathbf{Q}}$	Immature	200	200	1030
10XI7031216535.0 \mathcal{Q} Immature220100082010XI7050916736.6 \mathcal{Q} Immature2059809506XI70169168 \mathcal{Q} Immature269930125010XI7037017850.9 \mathcal{Q} Immature3501350163010XI70236179 \mathcal{Q} Immature2501280100010XI7028018153.8 \mathcal{Q} Immature3001200130022X706518453.0* \mathcal{Q} Pregnant280950119010XI70242188 \mathcal{Q} Mature3201200165010XI70242188 \mathcal{Q} Mature3201200165010XI70242188 \mathcal{Q} Mature3201200165010XI7024519053.2 \mathcal{Q} Mature28097085022X702519057.1 \mathcal{Q} Lactating310106013706XI70165193 \mathcal{Q} Mature3001150165010XI7025019361.8 \mathcal{Q} Mature3601050	10 XI '70	232	164		Ŷ	Immature	192	660	840
10XI7050916736.6 \mathcal{Q} Immature2059809506XI70169168 \mathcal{Q} Immature269930125010XI7037017850.9 \mathcal{Q} Immature3501350163010XI70236179 \mathcal{Q} Immature2501280100010XI70236179 \mathcal{Q} Immature3001200130022X706518453.0* \mathcal{Q} Pregnant280950119010XI70242188 \mathcal{Q} Mature3201200165010XI7028218970.1 \mathcal{Q} Mature28097085010XI7024519053.2 \mathcal{Q} Mature28097085022X702519057.1 \mathcal{Q} Lactating310106013706XI70165193 \mathcal{Q} Mature3001150165010XI70234194 \mathcal{Q} Mature3601050175022X701819562.1 \mathcal{Q} Lactating290960146010XI7035019567.8 \mathcal{Q} Mature3505801500	10 XI '70	312	165	35.0	Ŷ	Immature	220	1000	820
101110169168 $ \mathcal{Q}$ Immature269930125010XI'7037017850.9 \mathcal{Q} Immature3501350163010XI'70236179 $ \mathcal{Q}$ Immature2501280100010XI'7028018153.8 \mathcal{Q} Immature3001200130022X'706518453.0* \mathcal{Q} Pregnant280950119010XI'70242188 $ \mathcal{Q}$ Mature3201200165010XI'7028218970.1 \mathcal{Q} Mature $-$ 1550170010XI'7024519053.2 \mathcal{Q} Mature28097085022X'702519057.1 \mathcal{Q} Lactating310106013706XI'70165193 $ \mathcal{Q}$ Mature3001150165010XI'7025019361.8 \mathcal{Q} Mature3601050175022X'701819562.1 \mathcal{Q} Lactating290960146010XI'7035019567.8 \mathcal{Q} Mature350580150010XI'7034919556.3 \mathcal{Q} Mature400 </td <td>10 XI '70</td> <td>509</td> <td>167</td> <td>36.6</td> <td>Ŷ</td> <td>Immature</td> <td>205</td> <td>980</td> <td>950</td>	10 XI '70	509	167	36.6	Ŷ	Immature	205	980	950
10×1 70 370 178 50.9 φ Immature 350 1350 1630 10×1 70 236 179 - φ Immature 250 1280 1000 10×1 70 236 179 - φ Immature 300 1200 1300 22×70 65 184 53.0^* φ Pregnant 280 950 1190 10×1 70 242 188 - φ Mature 320 1200 1650 10×1 70 242 188 - φ Mature 320 1200 1650 10×1 70 282 189 70.1 φ Mature 280 970 850 10×1 70 245 190 53.2 φ Mature 280 970 850 22×70 25 190 57.1 φ Lactating 310 1060 1370 6×1 70 165 193 - φ Mature 300 1150 1650 10×1 70 250 193 61.8 φ Mature 400 1250 1300 10×1 70 234 194 - φ Mature 360 1050 1750 22×70 18 195 67.8 φ Mature 350 580 1500 10×1 70 349 195 56.3 φ Mature 40	6 XI '70	169	168		,	Immature	269	930	1250
10XI70236179 \mathcal{Q} Immature2501280100010XI7028018153.8 \mathcal{Q} Immature3001200130022X706518453.0* \mathcal{Q} Pregnant280950119010XI70242188 \mathcal{Q} Mature3201200165010XI7028218970.1 \mathcal{Q} Mature1550170010XI7028219053.2 \mathcal{Q} Mature28097085022X702519057.1 \mathcal{Q} Lactating310106013706XI70165193 \mathcal{Q} Mature3001150165010XI7025019361.8 \mathcal{Q} Mature4001250130010XI70234194 \mathcal{Q} Mature3601050.175022X701819562.1 \mathcal{Q} Lactating290960146010XI7035019567.8 \mathcal{Q} Mature350580150010XI7034919556.3 \mathcal{Q} Mature4001200130010XI7030919568.4 \mathcal{Q} Mature14001	10 XI '70	370	178	50.9	Ŷ	Immature	350	1350	1630
10XI7028018153.8 \bigcirc Immature3001200130022X706518453.0* \bigcirc Pregnant280950119010XI70242188 \bigcirc Mature3201200165010XI7028218970.1 \bigcirc Mature1550170010XI7028218970.1 \bigcirc Mature28097085010XI7024519053.2 \bigcirc Mature28097085022X702519057.1 \bigcirc Lactating310106013706XI70165193 \bigcirc Mature3001150165010XI7025019361.8 \bigcirc Mature3001150165010XI70234194 \bigcirc Mature3601050175022X701819562.1 \bigcirc Lactating290960146010XI7035019567.8 \bigcirc Mature350580150010XI7030919556.3 \bigcirc Mature4001200130010XI7030919568.4 \bigcirc Mature14001250	10 XI '70	236	179		, Ç	Immature	250	1280	1000
22×70 65 184 53.0^* φ Pregnant 280 950 1190 10×1 70 242 188 $ \varphi$ Mature 320 1200 1650 10×1 70 282 189 70.1 φ Mature $ 1550$ 1700 10×1 70 282 189 70.1 φ Mature $ 1550$ 1700 10×1 70 245 190 53.2 φ Mature 280 970 850 22×70 245 190 57.1 φ Lactating 310 1060 1370 6×1 70 165 193 $ \varphi$ Mature 300 1150 1650 10×1 70 250 193 61.8 φ Mature 400 1250 1300 10×1 70 234 194 $ \varphi$ Mature 360 1050 1750 22×70 18 195 62.1 φ Lactating 290 960 1460 10×1 70 350 195 67.8 φ Mature 350 580 1500 10×1 70 349 195 56.3 φ Mature 400 1200 1300 10×1 70 309 195 68.4 φ Mature $ 1400$ 1250	10 XI '70	280	181	53.8	Ŷ	Immature	300	1200	1300
10XI70242188 $ \varphi$ Mature3201200165010XI7028218970.1 φ Mature $-$ 1550170010XI7028218970.1 φ Mature $-$ 1550170010XI7024519053.2 φ Mature28097085022X702519057.1 φ Lactating310106013706XI70165193 $ \varphi$ Mature3001150165010XI7025019361.8 φ Mature4001250130010XI70234194 $ \varphi$ Mature3601050175022X701819562.1 φ Lactating290960146010XI7035019567.8 φ Mature350580150010XI7034919556.3 φ Mature4001200130010XI7030919568.4 φ Mature $-$ 14001250	22 X '70	65	184	53.0*	Ŷ	Pregnant	280	950	1190
10XI7028218970.1 \bigcirc \bigwedge Mature—1550170010XI7024519053.2 \bigcirc Mature28097085022X702519057.1 \bigcirc Lactating310106013706XI70165193— \bigcirc Mature3001150165010XI7025019361.8 \bigcirc Mature4001250130010XI70234194— \bigcirc Mature3601050.175022X701819562.1 \bigcirc Lactating290960146010XI7035019567.8 \bigcirc Mature350580150010XI7034919556.3 \bigcirc Mature4001200130010XI7030919568.4 \bigcirc Mature—14001250	10 XI '70	242	188		,	Mature	320	1200	1650
10XI7024519053.2 \bigcirc Mature28097085022X702519057.1 \bigcirc Lactating310106013706XI70165193- \bigcirc Mature3001150165010XI7025019361.8 \bigcirc Mature4001250130010XI70234194- \bigcirc Mature3601050.175022X701819562.1 \bigcirc Lactating290960146010XI7035019567.8 \bigcirc Mature350580150010XI7034919556.3 \bigcirc Mature4001200130010XI7030919568.4 \bigcirc Mature-14001250	10 XI '70	282	189	70.1	$C = \overset{+}{Q} A C$	Mature	CH_	1550	1700
1011121314141422X702519057.1QLactating310106013706XI70165193-QMature3001150165010XI7025019361.8QMature4001250130010XI70234194-QMature3601050.175022X701819562.1QLactating290960146010XI7035019567.8QMature350580150010XI7034919556.3QMature4001200130010XI7030919568.4QMature-14001250	10 XI '70	245	190	53.2	,	Mature	280	970	850
6XI'70165193 $ \mathcal{Q}$ Mature3001150165010XI'7025019361.8 \mathcal{Q} Mature4001250130010XI'70234194 $ \mathcal{Q}$ Mature3601050175022X'701819562.1 \mathcal{Q} Lactating290960146010XI'7035019567.8 \mathcal{Q} Mature350580150010XI'7034919556.3 \mathcal{Q} Mature4001200130010XI'7030919568.4 \mathcal{Q} Mature-14001250	22 X '70	25	190	57.1	Ŷ	Lactating	310	1060	1370
10XI7025019361.8 \bigcirc Mature4001250130010XI70234194- \bigcirc Mature3601050.175022X701819562.1 \bigcirc Lactating290960146010XI7035019567.8 \bigcirc Mature350580150010XI7034919556.3 \bigcirc Mature4001200130010XI7030919568.4 \bigcirc Mature-14001250	6 XI '70	165	193	_	Ŷ	Mature	300	1150	1650
10XI70234194 $ \bigcirc$ Mature3601050.175022X701819562.1 \bigcirc Lactating290960146010XI7035019567.8 \bigcirc Mature350580150010XI7034919556.3 \bigcirc Mature4001200130010XI7030919568.4 \bigcirc Mature14001250	10 XI '70	250	193	61.8	φ.	Mature	400	1250	1300
22 X '70 18 195 62.1 Q Lactating 290 960 1460 10 XI '70 350 195 67.8 Q Mature 350 580 1500 10 XI '70 349 195 56.3 Q Mature 400 1200 1300 10 XI '70 309 195 68.4 Q Mature 1400 1250	10 XI '70	234	194		ç	Mature	360	1050.	1750
10XI'70350195 67.8 \bigcirc Mature350580150010XI'7034919556.3 \bigcirc Mature4001200130010XI'7030919568.4 \bigcirc Mature14001250	22 X '70	18	195	62.1	ç	Lactating	290	960	1460
10 XI '7034919556.3 \bigcirc Mature4001200130010 XI '7030919568.4 \bigcirc Mature14001250	10 XI '70	350	195	67.8	Ŷ	Mature	350	580	1500
10 XI '70 309 195 68.4 Q Mature - 1400 1250	10 XI '70	349	195	56.3	Ŷ	Mature	400	1200	1300
	10 XI '70	309	195	68.4	Ŷ	Mature		1400	1250

WEIGHTS OF 55 SPECIMENS OF STENELLA ATTENUATA

Kidney				Stom	ach			Intestine length	
left	Pancreas		T II		TTT			Spleen	(cm)
ien	11g11t	19 4	20.7	96 1	19.4	11.2	410	12.9	
-	43 56	12.4	34.1 94.6	30.1 45 0	12.4	6.9	410	19.0	700
46	50		55.0	40.0	9.2 10.1	0.2	445	14	820
72	50	20.8	33 27 G	40 26 0	12.6	9	465	18.3	775
		23.5	20 0	30.2	8.6	64	410	9.4	845
 FO	_	25	27.8	39.2 49	16.2		595	18.4	930
50	_	23.3	40.3	45 8	16.3	6 5	500	18	826
75	75	41 2	130	60	26		790	20.4	975
75	75	56.3	130	85	19.5	_	980	26.9	888
150	185	100	200	160	40.4	23.6	1650	17.2	1329
150	155	90	210	80	30	30	1340	17	1453
_		50	210				1750		
176	170	117	(170	0)	1700	51	1330
160	170	72	270	170	40	29.5	1600	32.8	1280
100		150	460	200	60	40	1660	65	1486
_	240		625	180	50	34	1720	33.2	1117
205	240	95	480	225	55	28.6		19.7	_
60	60	20.5	29	19	6	4	320	6	900
48	50	21.2	28	28.6	8.4	7.0	270	10	688
60	60	70	29	19	6	4	420	38	900
		34.5	49.5	41.8	13.5	6.8	550	20	1161
40	60	33.7	54.6	41.2	19.1	·	580	17.3	880
		29.5	44.2	32.8	14.0	—	575	11.1	820
	60	17	50	50	11.1	10.1	480	20.8	778
—		25	40	40	10	10	460	10	790
		70	130	90	38.2	23	1270	18.9	1235
95	90	60	120	98	70	13.3	1000	32	1020
	_	70	200	110	36.1	21.1	1300	17.2	
135	135	80	205	110	25,7	21	1300	58	895
160	155	80	(70	0	—)	1800	21	1240
			_	-			1350		
165	168	105	288	150	26.8	31.4	1400	8	1117
		— நிக	日田		大 協告米	त सा ज	1700		
210	190	110	300	140	39.4	31.6	1600	12.8	
	_	100	. 490	180	50	40	1920	23	1232
	—	—					2400		
—	200	100	320	170	44.8	28.8	1180	12.3	1350
		87	340	200	43.3	31	1640	13.8	1593
	-	160	(100	0	—)		6	
_	—		-				1750		
245	255	120	475	215	55	24.9	1700	23.7	1422
260	310	120	390	210	40	30	1960	29	1418
245	255	120	457	215	55	24,9	1750	23.7	1337
							1880		1145
220	235	100	410	200	65	36.2	1850	11.4	1145
								Conti	hour

W-ights of internal organs (a)

Sci. Rep. Whales Res. Inst., No. 33, 1981

•

Continued...

.

APPENDIX TABLE 3.

Dat ki	e of ll	Field no .	Body length (cm)	Body weight (kg)	Sex	Life stage or Reproductive condition	Heart	Lungs	Liver
10 X	1 '70	279	197	67.8	Ŷ	Mature	385	1250	1400
6 X	I '70	166	198		Ŷ	Pregnant	295	950	1800
10 X	I '70	391	199	71.0	Ŷ	Mature	365	1200	1580
10 X	I '70	348	200	61.5	Ŷ	Mature		1020	1450
6 X	I '70	163	203	—	Ŷ	Mature	370	1100	2000
10 X	I '70	507	207	56.3	Ŷ	Mature	300	1000	1450
10 X	I '70	508	208	72.0	Ŷ	Mature	360	1150	1780
6 X	I '70	164	210		Ŷ	Pregnant	362	1400	1700
6 X	I '70	168	210	-	Ŷ	Pregnant	302	1300	1300
6 X	I '70	172	210	_	ę	Mature		1500	1900

* excluding fetus weight.

Continued.

Weights of internal organs (g)									
Kidney		D		Stor	nach			length	
left	right	Pancreas	I	II	111	IV	Intestine	Spieen	(cm)
245	225	215	390	190	41.4	43.4	1950	20.9	1548
		· <u> </u>					2700		1290
245	250	110	445	240	75	37	1850	25.3	1466
						_	1600		
	196	140	(——	850		—)	2750	47	1665
210	190	115	325	200	50	34.9	1900	19.2	1200
	225	145	390	200		10.4	1750	62	1586
		<u> </u>	495	275	50	24	2750	20	1000
<u> </u>		136	(700)		1850	26	1118	
316	280	128	(100)00(—)	2650	29	1450

